Suppr超能文献

背侧注意网络在基于特征的分心物抑制中的作用。

Role of the dorsal attention network in distracter suppression based on features.

机构信息

Department of Brain and Cognition, KU Leuven, Leuven, Belgium.

Department of Experimental Psychology, University of Oxford, Oxford, UK.

出版信息

Cogn Neurosci. 2020 Jan;11(1-2):37-46. doi: 10.1080/17588928.2019.1683525. Epub 2019 Nov 1.

Abstract

Selective attention allows us to prioritize the processing of relevant information and filter out irrelevant information. Human functional neuroimaging and lesion-based studies have highlighted the fronto-parietal dorsal attention network (DAN) as an important network in this process. In this study, we investigated the role of the DAN in distracter suppression by dynamically modifying the priority of visual information (target > high priority distracter > low priority distracter) based on features only. To this end, we collected fMRI data in 24 healthy subjects, who performed a feature-based variant of the sustained attention to response task. Participants had to select one or attend two stream(s) of overlapping digits that differed in color and respond to each digit in the task-relevant stream(s) except to a single non-target digit. Results showed higher DAN activity when a target was co-presented with a high versus low priority distracter. Furthermore, higher DAN activity was observed when selectively attending one (target + high/low priority distracter) versus simultaneously attending two (target + target) stream(s) of digits. In conclusion, our study highlights the contribution of the DAN in the feature-based suppression of task-irrelevant information.

摘要

选择性注意使我们能够优先处理相关信息,并过滤掉不相关的信息。人类功能神经影像学和基于病变的研究强调了额顶背侧注意网络(DAN)在这个过程中的重要作用。在这项研究中,我们通过仅基于特征动态地修改视觉信息的优先级(目标>高优先级干扰物>低优先级干扰物)来研究 DAN 在干扰物抑制中的作用。为此,我们收集了 24 名健康受试者的 fMRI 数据,他们执行了基于特征的持续注意力反应任务变体。参与者必须选择一个或同时注意两个重叠数字流,这些数字流在颜色上有所不同,并对任务相关流中的每个数字做出反应,除了一个非目标数字。结果表明,当目标与高优先级干扰物同时出现时,DAN 活动更高。此外,当选择性地注意一个(目标+高/低优先级干扰物)与同时注意两个(目标+目标)数字流时,DAN 活动更高。总之,我们的研究强调了 DAN 在基于特征的抑制无关信息方面的贡献。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d368/6882310/3c72fe62e70b/PCNS_A_1683525_F0001_C.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验