Suppr超能文献

超疏水表面上两个不同温度水滴的聚并、扩展和反弹

Coalescence, Spreading, and Rebound of Two Water Droplets with Different Temperatures on a Superhydrophobic Surface.

作者信息

Xu Hao, Chang Chao, Yi Nan, Tao Peng, Song Chengyi, Wu Jianbo, Deng Tao, Shang Wen

机构信息

State Key Laboratory of Metal Matrix Composites, Advanced Energy Materials and Technology Center, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China.

Institute of Marine Engineering and Thermal Science, Marine Engineering College, Dalian Maritime University, Dalian 116026, P. R. China.

出版信息

ACS Omega. 2019 Oct 14;4(18):17615-17622. doi: 10.1021/acsomega.9b01181. eCollection 2019 Oct 29.

Abstract

This paper studied the coalescence, spreading, and rebound of two droplets with different temperatures on a superhydrophobic surface. When the temperature of the impacting droplet was the same as that of the stationary droplet, there was a large deformation of both droplets before the coalescence and the energy dissipation was also large. The coalescence happened at the time close to the maximum spreading. When the temperature of the impacting droplet increased, the deformation of both droplets became smaller before the coalescence and the coalescence happened at or even before the droplets started to spread. The energy dissipation and loss in the later situation is less than those in the previous case. The rebounding characteristics of the merged droplets were also found to be dependent on the temperature. There is an optimum temperature at which the merged droplets can rebound for more times due to the balance of energy loss and also the interaction of the merged droplets with the underlying superhydrophobic substrate. These findings may help further the fundamental understanding of droplet collision on a superhydrophobic surfaces and also offer an alternative strategy to remove droplets from the underlying surfaces for different industrial applications, including condensation heat transfer in steam power plants and phase-change-based thermal management systems.

摘要

本文研究了两个温度不同的液滴在超疏水表面上的聚并、铺展和反弹情况。当撞击液滴的温度与静止液滴的温度相同时,聚并前两个液滴都会发生较大变形,能量耗散也较大。聚并发生在接近最大铺展的时刻。当撞击液滴的温度升高时,聚并前两个液滴的变形变小,聚并发生在液滴开始铺展之时甚至之前。后一种情况下的能量耗散和损失比前一种情况要少。还发现合并后液滴的反弹特性也取决于温度。存在一个最佳温度,在该温度下,由于能量损失的平衡以及合并后液滴与下层超疏水基底的相互作用,合并后液滴能够反弹更多次。这些发现可能有助于进一步从根本上理解超疏水表面上的液滴碰撞现象,也为不同工业应用(包括蒸汽发电厂中的冷凝传热和基于相变的热管理系统)从下层表面去除液滴提供了一种替代策略。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3461/6822121/02b6761b7e04/ao9b01181_0001.jpg

相似文献

1
Coalescence, Spreading, and Rebound of Two Water Droplets with Different Temperatures on a Superhydrophobic Surface.
ACS Omega. 2019 Oct 14;4(18):17615-17622. doi: 10.1021/acsomega.9b01181. eCollection 2019 Oct 29.
2
Effect of Wettability on the Collision Behavior of Acoustically Excited Droplets.
Langmuir. 2023 May 30;39(21):7408-7417. doi: 10.1021/acs.langmuir.3c00571. Epub 2023 May 15.
3
Designing a Superhydrophobic Surface for Enhanced Atmospheric Corrosion Resistance Based on Coalescence-Induced Droplet Jumping Behavior.
ACS Appl Mater Interfaces. 2019 Oct 16;11(41):38276-38284. doi: 10.1021/acsami.9b11415. Epub 2019 Oct 7.
4
Enhanced Coalescence-Induced Droplet-Jumping on Nanostructured Superhydrophobic Surfaces in the Absence of Microstructures.
ACS Appl Mater Interfaces. 2017 Oct 11;9(40):35391-35403. doi: 10.1021/acsami.7b09681. Epub 2017 Sep 28.
5
Droplet coalescence on water repellant surfaces.
Soft Matter. 2015 Jan 7;11(1):154-60. doi: 10.1039/c4sm01647e.
7
Hierarchical Superhydrophobic Surfaces with Micropatterned Nanowire Arrays for High-Efficiency Jumping Droplet Condensation.
ACS Appl Mater Interfaces. 2017 Dec 27;9(51):44911-44921. doi: 10.1021/acsami.7b14960. Epub 2017 Dec 15.
8
Unidirectional Fast Growth and Forced Jumping of Stretched Droplets on Nanostructured Microporous Surfaces.
ACS Appl Mater Interfaces. 2016 Aug 24;8(33):21776-86. doi: 10.1021/acsami.6b05324. Epub 2016 Aug 12.
10
Induced detachment of coalescing droplets on superhydrophobic surfaces.
Langmuir. 2012 Jan 17;28(2):1290-303. doi: 10.1021/la203926q. Epub 2012 Jan 6.

引用本文的文献

1
Carbon Nanotube Enhanced Filtration and Dewatering of Kerosene.
Membranes (Basel). 2022 Jun 15;12(6):621. doi: 10.3390/membranes12060621.
2
Scientific information about sugar-based emulsifiers: a comprehensive review.
RSC Adv. 2021 Oct 6;11(52):33004-33016. doi: 10.1039/d1ra04968b. eCollection 2021 Oct 4.
3
A Review of Biopolymers' Utility as Emulsion Stabilizers.
Polymers (Basel). 2021 Dec 30;14(1):127. doi: 10.3390/polym14010127.

本文引用的文献

1
Droplet Impact on Anisotropic Superhydrophobic Surfaces.
Langmuir. 2018 Mar 20;34(11):3533-3540. doi: 10.1021/acs.langmuir.7b03752. Epub 2018 Feb 28.
3
Spontaneous droplet trampolining on rigid superhydrophobic surfaces.
Nature. 2015 Nov 5;527(7576):82-5. doi: 10.1038/nature15738.
4
How coalescing droplets jump.
ACS Nano. 2014 Oct 28;8(10):10352-62. doi: 10.1021/nn503643m. Epub 2014 Sep 18.
5
Fly-eye inspired superhydrophobic anti-fogging inorganic nanostructures.
Small. 2014 Aug 13;10(15):3001-6. doi: 10.1002/smll.201400516. Epub 2014 Apr 22.
7
Rebounding droplet-droplet collisions on superhydrophobic surfaces: from the phenomenon to droplet logic.
Adv Mater. 2012 Nov 8;24(42):5738-43. doi: 10.1002/adma.201202980. Epub 2012 Sep 4.
8
Dynamics of collapse of air films in drop impact.
Phys Rev Lett. 2012 Feb 17;108(7):074505. doi: 10.1103/PhysRevLett.108.074505.
9
Controlled deposition of a high-performance small-molecule organic single-crystal transistor array by direct ink-jet printing.
Adv Mater. 2012 Jan 24;24(4):497-502. doi: 10.1002/adma.201103032. Epub 2011 Dec 23.
10
Applications of bio-inspired special wettable surfaces.
Adv Mater. 2011 Feb 8;23(6):719-34. doi: 10.1002/adma.201002689. Epub 2010 Dec 6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验