Sun Yiyu, Li Yanqiu, Li Tie, Yan Xu, Li Enze, Wei Pengzhi
Opt Express. 2019 Oct 28;27(22):32733-32745. doi: 10.1364/OE.27.032733.
Fast source optimization (SO) is in demand urgently for holistic lithography on-line at 14-5 nm nodes. Our earlier works of fast compressive sensing (CS) SO methods adopted randomly sampling monitoring pixels on layout patterns, consequently resulting in failure of SO sometimes and poor image fidelity compared to gradient-based SO with complete sampling (SD-SO). This paper proposes a novel certain contour sampling-Bayesian compressive sensing SO (CCS-BCS-SO) method to achieve the goals of fast SO and high fidelity patterns simultaneously. The CCS assures the optimized source uniquely and reduces the computational complexity significantly. The BCS theory, to our best knowledge, is for the first time applied to resolution enhancement techniques (RETs) in lithography systems to ensure high fidelity patterns. The results demonstrate that CCS-BCS-SO simultaneously achieves fast SO like CS-SO and high fidelity patterns like SD-SO.
对于14 - 5纳米节点的整体光刻在线技术,快速光源优化(SO)迫在眉睫。我们早期的快速压缩感知(CS)SO方法在布局图案上随机采样监测像素,因此有时会导致SO失败,并且与基于梯度的完全采样的SO(SD - SO)相比,图像保真度较差。本文提出了一种新颖的特定轮廓采样 - 贝叶斯压缩感知SO(CCS - BCS - SO)方法,以同时实现快速SO和高保真图案的目标。CCS确保了唯一的优化光源,并显著降低了计算复杂度。据我们所知,BCS理论首次应用于光刻系统中的分辨率增强技术(RET),以确保高保真图案。结果表明,CCS - BCS - SO同时实现了类似CS - SO的快速SO和类似SD - SO的高保真图案。