Sun Yiyu, Sheng Naiyuan, Li Tie, Li Yanqiu, Li Enze, Wei Pengzhi
Opt Express. 2019 Feb 4;27(3):2754-2770. doi: 10.1364/OE.27.002754.
Source and mask optimization (SMO) is an important method to improve lithography imaging fidelity. However, constrained by the computational inefficiency, the current SMO method can be used only in clip level applications. In this paper, to our best knowledge, the fast nonlinear compressive sensing (CS) theory is for the first time applied to solve the nonlinear inverse reconstruction problem in SMO. The proposed method simultaneously downsamples the layout pattern in the SMO procedure, which can effectively reduce the computation complexity. The space basis and two-dimensional (2D) discrete cosine transform (DCT) basis are selected to sparsely represent the source pattern and mask pattern, respectively. Based on the sparsity assumption of source and mask pattern, the SMO can be formulated as a nonlinear CS reconstruction problem. A Newton-iteration hard thresholding (Newton-IHTs) algorithm, by taking into account the second derivative of the cost function to accelerate convergence, is innovated to realize nonlinear CS-SMO with high imaging fidelity. Simulation results show the proposed method can significantly accelerate the SMO procedure over a traditional gradient-based method and IHTs-based method by a factor of 9.31 and 7.39, respectively.
源与掩膜优化(SMO)是提高光刻成像保真度的一种重要方法。然而,受计算效率低下的限制,当前的SMO方法仅能用于剪辑级应用。在本文中,据我们所知,快速非线性压缩感知(CS)理论首次被应用于解决SMO中的非线性逆重建问题。所提出的方法在SMO过程中同时对版图图案进行下采样,这可以有效降低计算复杂度。分别选择空间基和二维(2D)离散余弦变换(DCT)基来稀疏表示源图案和掩膜图案。基于源图案和掩膜图案的稀疏性假设,SMO可被表述为一个非线性CS重建问题。一种考虑成本函数二阶导数以加速收敛的牛顿迭代硬阈值(Newton - IHTs)算法被创新出来,以实现具有高成像保真度的非线性CS - SMO。仿真结果表明,所提出的方法相比于传统的基于梯度的方法和基于IHTs的方法,能分别将SMO过程显著加速9.31倍和7.39倍。