Suppr超能文献

多层仿冒过滤器:多分辨率下的可控变量选择

MULTILAYER KNOCKOFF FILTER: CONTROLLED VARIABLE SELECTION AT MULTIPLE RESOLUTIONS.

作者信息

Katsevich Eugene, Sabatti Chiara

机构信息

DEPARTMENT OF STATISTICS, STANFORD UNIVERSITY, 390 SERRA MALL, STANFORD, CALIFORNIA 94305,

出版信息

Ann Appl Stat. 2019 Mar;13(1):1-33. doi: 10.1214/18-AOAS1185. Epub 2019 Apr 10.

Abstract

We tackle the problem of selecting from among a large number of variables those that are "important" for an outcome. We consider situations where groups of variables are also of interest. For example, each variable might be a genetic polymorphism, and we might want to study how a trait depends on variability in genes, segments of DNA that typically contain multiple such polymorphisms. In this context, to discover that a variable is relevant for the outcome implies discovering that the larger entity it represents is also important. To guarantee meaningful results with high chance of replicability, we suggest controlling the rate of false discoveries for findings at the level of individual variables and at the level of groups. Building on the knockoff construction of Barber and Candès [ (2015) 2055-2085] and the multilayer testing framework of Barber and Ramdas [ (2017) 1247-1268], we introduce the multilayer knockoff filter (MKF). We prove that MKF simultaneously controls the FDR at each resolution and use simulations to show that it incurs little power loss compared to methods that provide guarantees only for the discoveries of individual variables. We apply MKF to analyze a genetic dataset and find that it successfully reduces the number of false gene discoveries without a significant reduction in power.

摘要

我们要解决的问题是,从大量变量中挑选出对某个结果“重要”的变量。我们考虑变量组也很重要的情况。例如,每个变量可能是一种基因多态性,我们可能想研究一个性状如何依赖于基因(通常包含多个此类多态性的DNA片段)的变异性。在这种情况下,发现一个变量与结果相关意味着发现它所代表的更大实体也很重要。为了确保结果有意义且具有高可重复性,我们建议在单个变量层面和变量组层面控制错误发现率。基于Barber和Candès [(2015)2055 - 2085]的仿冒品构造以及Barber和Ramdas [(2017)1247 - 1268]的多层测试框架,我们引入了多层仿冒品过滤器(MKF)。我们证明MKF在每个分辨率下都能同时控制错误发现率(FDR),并通过模拟表明,与仅为单个变量发现提供保证的方法相比,它几乎不会导致功率损失。我们应用MKF分析一个基因数据集,发现它成功减少了错误基因发现的数量,且功率没有显著降低。

相似文献

1
MULTILAYER KNOCKOFF FILTER: CONTROLLED VARIABLE SELECTION AT MULTIPLE RESOLUTIONS.
Ann Appl Stat. 2019 Mar;13(1):1-33. doi: 10.1214/18-AOAS1185. Epub 2019 Apr 10.
2
Knockoff boosted tree for model-free variable selection.
Bioinformatics. 2021 May 17;37(7):976-983. doi: 10.1093/bioinformatics/btaa770.
3
Competition-based control of the false discovery proportion.
Biometrics. 2023 Dec;79(4):3472-3484. doi: 10.1111/biom.13830. Epub 2023 Jan 30.
4
False discovery rate-controlled multiple testing for union null hypotheses: a knockoff-based approach.
Biometrics. 2023 Dec;79(4):3497-3509. doi: 10.1111/biom.13848. Epub 2023 Mar 15.
5
Local false discovery rate estimation with competition-based procedures for variable selection.
Stat Med. 2024 Jan 15;43(1):61-88. doi: 10.1002/sim.9942. Epub 2023 Nov 5.
6
Knockoff procedure for false discovery rate control in high-dimensional data streams.
J Appl Stat. 2023 May 15;50(14):2970-2983. doi: 10.1080/02664763.2023.2200496. eCollection 2023.
7
Group-walk: a rigorous approach to group-wise false discovery rate analysis by target-decoy competition.
Bioinformatics. 2022 Sep 16;38(Suppl_2):ii82-ii88. doi: 10.1093/bioinformatics/btac471.
8
Compositional knockoff filter for high-dimensional regression analysis of microbiome data.
Biometrics. 2021 Sep;77(3):984-995. doi: 10.1111/biom.13336. Epub 2020 Jul 25.
10
DeepLINK: Deep learning inference using knockoffs with applications to genomics.
Proc Natl Acad Sci U S A. 2021 Sep 7;118(36). doi: 10.1073/pnas.2104683118.

引用本文的文献

1
Controlling the False Split Rate in Tree-Based Aggregation.
J Am Stat Assoc. 2025;120(550):935-947. doi: 10.1080/01621459.2024.2376285. Epub 2024 Sep 24.
2
Catch me if you can: signal localization with knockoff -values.
J R Stat Soc Series B Stat Methodol. 2024 Jun 14;87(1):56-73. doi: 10.1093/jrsssb/qkae042. eCollection 2025 Feb.
3
Second-order group knockoffs with applications to genome-wide association studies.
Bioinformatics. 2024 Oct 1;40(10). doi: 10.1093/bioinformatics/btae580.
4
Summary statistics knockoffs inference with family-wise error rate control.
Biometrics. 2024 Jul 1;80(3). doi: 10.1093/biomtc/ujae082.
5
Transcriptome data are insufficient to control false discoveries in regulatory network inference.
Cell Syst. 2024 Aug 21;15(8):709-724.e13. doi: 10.1016/j.cels.2024.07.006.
6
Analysis of Microbiome Data.
Annu Rev Stat Appl. 2024 Apr;11(1):483-504. doi: 10.1146/annurev-statistics-040522-120734. Epub 2023 Oct 13.
7
Smoothed Nested Testing on Directed Acyclic Graphs.
Biometrika. 2022 Jun;109(2):457-471. doi: 10.1093/biomet/asab041. Epub 2021 Jul 2.
10
Grace-AKO: a novel and stable knockoff filter for variable selection incorporating gene network structures.
BMC Bioinformatics. 2022 Nov 14;23(1):478. doi: 10.1186/s12859-022-05016-y.

本文引用的文献

1
Hypotheses on a tree: new error rates and testing strategies.
Biometrika. 2021 Sep;108(3):575-590. doi: 10.1093/biomet/asaa086. Epub 2020 Oct 14.
2
Gene hunting with hidden Markov model knockoffs.
Biometrika. 2019 Mar;106(1):1-18. doi: 10.1093/biomet/asy033. Epub 2018 Aug 4.
3
Controlling the Rate of GWAS False Discoveries.
Genetics. 2017 Jan;205(1):61-75. doi: 10.1534/genetics.116.193987. Epub 2016 Oct 26.
4
structSSI: Simultaneous and Selective Inference for Grouped or Hierarchically Structured Data.
J Stat Softw. 2014;59(13):1-21. doi: 10.18637/jss.v059.i13. Epub 2014 Sep 12.
5
Progress in methods for rare variant association.
BMC Genet. 2016 Feb 3;17 Suppl 2(Suppl 2):6. doi: 10.1186/s12863-015-0316-7.
6
SLOPE-ADAPTIVE VARIABLE SELECTION VIA CONVEX OPTIMIZATION.
Ann Appl Stat. 2015;9(3):1103-1140. doi: 10.1214/15-AOAS842.
7
Genetic Variant Selection: Learning Across Traits and Sites.
Genetics. 2016 Feb;202(2):439-55. doi: 10.1534/genetics.115.184572. Epub 2015 Dec 17.
8
Many Phenotypes Without Many False Discoveries: Error Controlling Strategies for Multitrait Association Studies.
Genet Epidemiol. 2016 Jan;40(1):45-56. doi: 10.1002/gepi.21942. Epub 2015 Dec 2.
9
Statistical learning and selective inference.
Proc Natl Acad Sci U S A. 2015 Jun 23;112(25):7629-34. doi: 10.1073/pnas.1507583112.
10
Human genomics. The Genotype-Tissue Expression (GTEx) pilot analysis: multitissue gene regulation in humans.
Science. 2015 May 8;348(6235):648-60. doi: 10.1126/science.1262110. Epub 2015 May 7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验