Suppr超能文献

基于置换检验的联合零假设的错误发现率控制多重检验方法。

False discovery rate-controlled multiple testing for union null hypotheses: a knockoff-based approach.

机构信息

Department of Biostatistics, University of Nebraska Medical Center, Omaha, Nebraska, USA.

出版信息

Biometrics. 2023 Dec;79(4):3497-3509. doi: 10.1111/biom.13848. Epub 2023 Mar 15.

Abstract

False discovery rate (FDR) controlling procedures provide important statistical guarantees for replicability in signal identification based on multiple hypotheses testing. In many fields of study, FDR controling procedures are used in high-dimensional (HD) analyses to discover features that are truly associated with the outcome. In some recent applications, data on the same set of candidate features are independently collected in multiple different studies. For example, gene expression data are collected at different facilities and with different cohorts, to identify the genetic biomarkers of multiple types of cancers. These studies provide us with opportunities to identify signals by considering information from different sources (with potential heterogeneity) jointly. This paper is about how to provide FDR control guarantees for the tests of union null hypotheses of conditional independence. We present a knockoff-based variable selection method (Simultaneous knockoffs) to identify mutual signals from multiple independent datasets, providing exact FDR control guarantees under finite sample settings. This method can work with very general model settings and test statistics. We demonstrate the performance of this method with extensive numerical studies and two real-data examples.

摘要

错误发现率(FDR)控制程序为基于多重假设检验的信号识别中的可重复性提供了重要的统计保证。在许多研究领域中,FDR 控制程序用于高维(HD)分析中,以发现与结果真正相关的特征。在最近的一些应用中,同一组候选特征的数据在多个不同的研究中独立收集。例如,基因表达数据在不同的设施和不同的队列中收集,以确定多种癌症的遗传生物标志物。这些研究为我们提供了通过联合考虑来自不同来源(具有潜在异质性)的信息来识别信号的机会。本文介绍了如何为条件独立性的联合零假设检验提供 FDR 控制保证。我们提出了一种基于 knockoff 的变量选择方法(Simultaneous knockoffs),用于从多个独立数据集识别相互信号,在有限样本设置下提供确切的 FDR 控制保证。该方法适用于非常一般的模型设置和检验统计量。我们通过广泛的数值研究和两个实际数据示例展示了该方法的性能。

相似文献

1
False discovery rate-controlled multiple testing for union null hypotheses: a knockoff-based approach.
Biometrics. 2023 Dec;79(4):3497-3509. doi: 10.1111/biom.13848. Epub 2023 Mar 15.
2
Local false discovery rate estimation with competition-based procedures for variable selection.
Stat Med. 2024 Jan 15;43(1):61-88. doi: 10.1002/sim.9942. Epub 2023 Nov 5.
3
Knockoff boosted tree for model-free variable selection.
Bioinformatics. 2021 May 17;37(7):976-983. doi: 10.1093/bioinformatics/btaa770.
4
MULTILAYER KNOCKOFF FILTER: CONTROLLED VARIABLE SELECTION AT MULTIPLE RESOLUTIONS.
Ann Appl Stat. 2019 Mar;13(1):1-33. doi: 10.1214/18-AOAS1185. Epub 2019 Apr 10.
5
Bayesian variable selection using Knockoffs with applications to genomics.
Comput Stat. 2022 Sep 18:1-20. doi: 10.1007/s00180-022-01283-8.
6
Catch me if you can: signal localization with knockoff -values.
J R Stat Soc Series B Stat Methodol. 2024 Jun 14;87(1):56-73. doi: 10.1093/jrsssb/qkae042. eCollection 2025 Feb.
9
DeepLINK: Deep learning inference using knockoffs with applications to genomics.
Proc Natl Acad Sci U S A. 2021 Sep 7;118(36). doi: 10.1073/pnas.2104683118.
10
Controlling false discovery rate for mediator selection in high-dimensional data.
Biometrics. 2024 Jul 1;80(3). doi: 10.1093/biomtc/ujae064.

引用本文的文献

本文引用的文献

1
Mediation analysis for survival data with high-dimensional mediators.
Bioinformatics. 2021 Nov 5;37(21):3815-3821. doi: 10.1093/bioinformatics/btab564.
3
Diagnostic, prognostic, and therapeutic significance of long non-coding RNA MALAT1 in cancer.
Biochim Biophys Acta Rev Cancer. 2021 Apr;1875(2):188502. doi: 10.1016/j.bbcan.2021.188502. Epub 2021 Jan 8.
4
Targeting post-translational histone modifying enzymes in glioblastoma.
Pharmacol Ther. 2021 Apr;220:107721. doi: 10.1016/j.pharmthera.2020.107721. Epub 2020 Nov 2.
5
High-dimensional mediation analysis in survival models.
PLoS Comput Biol. 2020 Apr 17;16(4):e1007768. doi: 10.1371/journal.pcbi.1007768. eCollection 2020 Apr.
6
Gene hunting with hidden Markov model knockoffs.
Biometrika. 2019 Mar;106(1):1-18. doi: 10.1093/biomet/asy033. Epub 2018 Aug 4.
7
FWER and FDR control when testing multiple mediators.
Bioinformatics. 2018 Jul 15;34(14):2418-2424. doi: 10.1093/bioinformatics/bty064.
8
Malignant Transformation of a Dysembryoplastic Neuroepithelial Tumor (DNET) Characterized by Genome-Wide Methylation Analysis.
J Neuropathol Exp Neurol. 2016 Apr;75(4):358-65. doi: 10.1093/jnen/nlw007. Epub 2016 Feb 27.
9
TCGA2STAT: simple TCGA data access for integrated statistical analysis in R.
Bioinformatics. 2016 Mar 15;32(6):952-4. doi: 10.1093/bioinformatics/btv677. Epub 2015 Nov 14.
10
Neuromolecular responses to social challenge: common mechanisms across mouse, stickleback fish, and honey bee.
Proc Natl Acad Sci U S A. 2014 Dec 16;111(50):17929-34. doi: 10.1073/pnas.1420369111. Epub 2014 Dec 1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验