Teklay Achenafi, Dile Yihun T, Asfaw Dereje H, Bayabil Haimanote K, Sisay Kibruyesfa
Ethiopian Institute of Water Resources, Department of Water Resources Engineering and Management, Addis Ababa University, Addis Ababa, Ethiopia.
Spatial Science Laboratory, Ecosystem Science and Management Department, Texas A & M University, College Station, TX, 77801, USA.
Heliyon. 2019 Sep 18;5(9):e02469. doi: 10.1016/j.heliyon.2019.e02469. eCollection 2019 Sep.
The Weather Research and Forecasting (WRF) model is one of the regional climate models for dynamically downscaling climate variables at finer spatial and temporal scales. The objective of this study was to evaluate the performance of WRF model for simulating temperature and rainfall over Lake Tana basin in Ethiopia. The WRF model was configured for six experimental setups using three land surface models (LSMs): Noah, RUC and TD; and two land use datasets: USGS and updated New Land Use (NLU). The performances of WRF configurations were assessed by comparing simulated and observed data from March to August 2015. The result showed that temperature and rainfall simulations were sensitive to LSM and land use data choice. The combination of NLU with RUC and TD produced very small cold bias (0.27 °C) and warm bias (0.20 °C) for 2m maximum temperature (Tmax) and 2m minimum temperature (Tmin), respectively. WRF model with RUC and NLU captured well the observed spatial and temporal variability of Tmax, while TD and NLU for Tmin. Moreover, rainfall simulation was better with NLU; especially NLU and Noah configuration produced the smallest mean bias (2.39 mm/day) and root mean square error (6.6 mm/day). All the WRF experiments overestimated light and heavy rainfall events. Overall, findings showed that the application of updated land use data substantially improved the WRF model performance in simulating temperature and rainfall. The study would provide valuable support for identifying suitable LSM and land use data that can accurately predict the climate variables in the Blue Nile basin.
天气研究与预报(WRF)模型是用于在更精细的空间和时间尺度上动态降尺度气候变量的区域气候模型之一。本研究的目的是评估WRF模型在模拟埃塞俄比亚塔纳湖流域温度和降雨方面的性能。WRF模型使用三种陆面模型(LSM):诺亚(Noah)、RUC和TD;以及两种土地利用数据集:美国地质调查局(USGS)和更新后的新土地利用(NLU),配置了六种实验设置。通过比较2015年3月至8月的模拟数据和观测数据,评估了WRF配置的性能。结果表明,温度和降雨模拟对LSM和土地利用数据的选择很敏感。NLU与RUC和TD的组合分别在2米最高温度(Tmax)和2米最低温度(Tmin)模拟中产生了非常小的冷偏差(0.27℃)和暖偏差(0.20℃)。采用RUC和NLU的WRF模型很好地捕捉到了Tmax观测到的空间和时间变异性,而采用TD和NLU的WRF模型则捕捉到了Tmin的变异性。此外,使用NLU时降雨模拟效果更好;特别是NLU和诺亚配置产生了最小的平均偏差(2.39毫米/天)和均方根误差(6.6毫米/天)。所有WRF实验都高估了轻、重降雨事件。总体而言,研究结果表明,更新后的土地利用数据的应用显著提高了WRF模型在模拟温度和降雨方面的性能。该研究将为确定能够准确预测青尼罗河流域气候变量的合适LSM和土地利用数据提供有价值的支持。