Suppr超能文献

用于 1000 倍宽带可见荧光增强和多路复用生物传感的混合多极等离子体的铝金属表面。

Aluminum Metasurface with Hybrid Multipolar Plasmons for 1000-Fold Broadband Visible Fluorescence Enhancement and Multiplexed Biosensing.

机构信息

Department of Medical Engineering , California Institute of Technology , 1200 E. California Boulevard , MC 136-93, Pasadena , California 91125 , United States.

Samsung Advanced Institute of Technologies, Samsung Electronics , 130 Samseong-ro , Maetan-dong, Yeongtong-gu, Suwon , Gyeonggi-do 16678 , South Korea.

出版信息

ACS Nano. 2019 Dec 24;13(12):13775-13783. doi: 10.1021/acsnano.9b02926. Epub 2019 Nov 11.

Abstract

Aluminum (Al)-based nanoantennae traditionally suffer from weak plasmonic performance in the visible range, necessitating the application of more expensive noble metal substrates for rapidly expanding biosensing opportunities. We introduce a metasurface comprising Al nanoantennae of nanodisks-in-cavities that generate hybrid multipolar lossless plasmonic modes to strongly enhance local electromagnetic fields and increase the coupled emitter's local density of states throughout the visible regime. This results in highly efficient electromagnetic field confinement in visible wavelengths by these nanoantennae, favoring real-world plasmonic applications of Al over other noble metals. Additionally, we demonstrate spontaneous localization and concentration of target molecules at metasurface hotspots, leading to further improved on-chip detection sensitivity and a broadband fluorescence-enhancement factor above 1000 for visible wavelengths with respect to glass chips commonly used in bioassays. Using the metasurface and a multiplexing technique involving three visible wavelengths, we successfully detected three biomarkers, insulin, vascular endothelial growth factor, and thrombin relevant to diabetes, ocular and cardiovascular diseases, respectively, in a single 10 μL droplet containing only 1 fmol of each biomarker.

摘要

基于铝(Al)的纳米天线在可见光范围内通常表现出较弱的等离子体性能,因此需要使用更昂贵的贵金属衬底来满足快速发展的生物传感应用需求。我们引入了一种由纳米盘中腔组成的亚表面,它产生混合多极无损耗等离子体模式,从而强烈增强局部电磁场并增加整个可见光范围内耦合发射器的局域态密度。这导致这些纳米天线在可见光波长范围内实现了高效的电磁场限制,使得 Al 在等离子体应用方面优于其他贵金属。此外,我们还证明了目标分子在亚表面热点处的自发定位和集中,从而进一步提高了芯片检测灵敏度,使荧光增强因子在可见波长范围内超过 1000,相对于生物分析中常用的玻璃芯片。我们使用亚表面和涉及三个可见波长的复用技术,在单个 10 μL 含有每个生物标志物仅 1 fmol 的液滴中成功检测到了与糖尿病、眼部和心血管疾病相关的三种生物标志物,即胰岛素、血管内皮生长因子和凝血酶。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验