Ece Emre, Aslan Yusuf, Hacıosmanoğlu Nedim, Inci Fatih
UNAM-National Nanotechnology Research Center, Bilkent University, 06800 Ankara, Turkey.
Institute of Materials Science and Nanotechnology, Bilkent University, 06800 Ankara, Turkey.
ACS Sens. 2025 Feb 28;10(2):725-740. doi: 10.1021/acssensors.4c02070. Epub 2024 Dec 27.
Diverse analytical techniques are employed to scrutinize microplastics (MPs)─pervasive at hazardous concentrations across diverse sources ranging from water reservoirs to consumable substances. The limitations inherent in existing methods, such as their diminished detection capacities, render them inadequate for analyzing MPs of diminutive dimensions (microplastics: 1-5 μm; nanoplastics: < 1 μm). Consequently, there is an imperative need to devise methodologies that afford improved sensitivity and lower detection limits for analyzing these pollutants. In this study, we introduce a holistic strategy, i.e., MicroMetaSense, reliant on a metal-enhanced fluorescence (MEF) phenomenon in detecting a myriad size and types of MPs (i.e., poly(methyl methacrylate) (PMMA) and poly(ethylene terephthalate) (PET)) down to 183-205 fg, as well as validated the system with real samples (tap and lake) and artificial ocean samples as a real-world scenario. To obtain precise size distribution in nanometer scale, MPs are initially processed with an ultrafiltration on-a-chip method, and subsequently, the MPs stained with Nile Red dye are subjected to meticulous analysis under a fluorescence microscope, utilizing both a conventional method (glass substrate) and the MicroMetaSense platform. Our approach employs a metasurface to augment fluorescence signals, leveraging the MEF phenomenon, and it demonstrates an enhancement rate of 36.56-fold in detecting MPs compared to the standardized protocols. This low-cost ($2), time-saving (under 30 min), and highly sensitive (183-205 femtogram) strategy presents a promising method for precise size distribution and notable improvements in detection efficacy not only for laboratory samples but also in real environmental samples; hence, signifying a pivotal advancement in conventional methodologies in MP detection.
人们采用了多种分析技术来检测微塑料(MPs),微塑料在从水库到食用物质等各种来源中都以有害浓度普遍存在。现有方法存在固有的局限性,比如其检测能力下降,使得它们不足以分析微小尺寸的微塑料(微塑料:1 - 5微米;纳米塑料:< 1微米)。因此,迫切需要设计出能够提高灵敏度并降低检测限的方法来分析这些污染物。在本研究中,我们引入了一种整体策略,即微元传感(MicroMetaSense),它依靠金属增强荧光(MEF)现象来检测各种尺寸和类型的微塑料(即聚甲基丙烯酸甲酯(PMMA)和聚对苯二甲酸乙二酯(PET)),检测下限低至183 - 205飞克,并且在实际样本(自来水和湖水)以及模拟真实场景的人工海水样本中对该系统进行了验证。为了获得纳米级的精确尺寸分布,首先使用片上超滤方法对微塑料进行处理,随后,用尼罗红染料染色的微塑料在荧光显微镜下进行精细分析,同时使用传统方法(玻璃载片)和微元传感平台。我们的方法利用超表面增强荧光信号,借助金属增强荧光现象,与标准方法相比,在检测微塑料时其增强率达到了36.56倍。这种低成本(2美元)、省时(30分钟以内)且高灵敏度(183 - 205飞克)的策略不仅为实验室样本,也为实际环境样本提供了一种用于精确尺寸分布和显著提高检测效率的有前景的方法;因此,这标志着微塑料检测传统方法的一项关键进展。