Suppr超能文献

利用双层时间网络评估乌干达埃博拉病毒病的传播风险

Risk assessment of Ebola virus disease spreading in Uganda using a two-layer temporal network.

机构信息

Department of Electrical and Computer Engineering, Kansas State University, 1701D Platt St., Manhattan, KS, 66506, USA.

Zoonotic Disease Coordination Office (ZDCO), National One Health Platform (NOHP), Ministry of Health, Kampala, Uganda.

出版信息

Sci Rep. 2019 Nov 5;9(1):16060. doi: 10.1038/s41598-019-52501-1.

Abstract

Network-based modelling of infectious diseases apply compartmental models on a contact network, which makes the epidemic process crucially dependent on the network structure. For highly contagious diseases such as Ebola virus disease (EVD), interpersonal contact plays the most vital role in human-to-human transmission. Therefore, for accurate representation of EVD spreading, the contact network needs to resemble the reality. Prior research has mainly focused on static networks (only permanent contacts) or activity-driven networks (only temporal contacts) for Ebola spreading. A comprehensive network for EVD spreading should include both these network structures, as there are always some permanent contacts together with temporal contacts. Therefore, we propose a two-layer temporal network for Uganda, which is at risk of an Ebola outbreak from the neighboring Democratic Republic of Congo (DRC) epidemic. The network has a permanent layer representing permanent contacts among individuals within the family level, and a data-driven temporal network for human movements motivated by cattle trade, fish trade, or general communications. We propose a Gillespie algorithm with the susceptible-infected-recovered (SIR) compartmental model to simulate the evolution of EVD spreading as well as to evaluate the risk throughout our network. As an example, we applied our method to a network consisting of 23 districts along different movement routes in Uganda starting from bordering districts of the DRC to Kampala. Simulation results show that some regions are at higher risk of infection, suggesting some focal points for Ebola preparedness and providing direction to inform interventions in the field. Simulation results also show that decreasing physical contact as well as increasing preventive measures result in a reduction of chances to develop an outbreak. Overall, the main contribution of this paper lies in the novel method for risk assessment, which can be more precise with an increasing volume of accurate data for creating the network model.

摘要

传染病网络建模将房室模型应用于接触网络,这使得传染病的传播过程极大地依赖于网络结构。对于埃博拉病毒病(EVD)等高传染性疾病,人际接触在人与人之间的传播中起着至关重要的作用。因此,为了准确描述 EVD 的传播,接触网络需要与现实相吻合。先前的研究主要集中在静态网络(仅永久接触)或基于活动的网络(仅临时接触)上,用于 Ebola 的传播。用于 EVD 传播的综合网络应该同时包括这两种网络结构,因为总会有一些永久接触和临时接触。因此,我们提出了一种针对乌干达的两层时间网络,该网络面临着来自邻国刚果民主共和国(DRC)疫情的埃博拉爆发风险。该网络具有一个永久层,代表家庭内部个体之间的永久接触,以及一个由牛贸易、鱼贸易或一般通信驱动的基于数据的临时网络。我们提出了一种带有易感-感染-恢复(SIR)房室模型的 Gillespie 算法,用于模拟 EVD 传播的演变,并评估整个网络的风险。作为一个例子,我们将我们的方法应用于一个由乌干达 23 个不同流动路线的地区组成的网络,这些地区从与 DRC 接壤的地区延伸到坎帕拉。模拟结果表明,一些地区的感染风险更高,这表明一些重点地区需要做好埃博拉的准备工作,并为实地干预提供方向。模拟结果还表明,减少身体接触和增加预防措施会降低爆发的机会。总的来说,本文的主要贡献在于风险评估的新方法,随着创建网络模型的准确数据量的增加,该方法可以更加精确。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/098e/6831630/8b43da343af6/41598_2019_52501_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验