Suppr超能文献

用于美国西尼罗河病毒的时空个体网络框架:西尼罗河病毒的传播模式。

A spatio-temporal individual-based network framework for West Nile virus in the USA: Spreading pattern of West Nile virus.

机构信息

Department of Electrical & Computer Engineering, Kansas State University, Manhattan, Kansas, United States of America.

Arthropod-Borne Animal Diseases Research Unit, Center for Grain and Animal Health Research, USDA ARS, Manhattan, Kansas, United States of America.

出版信息

PLoS Comput Biol. 2019 Mar 13;15(3):e1006875. doi: 10.1371/journal.pcbi.1006875. eCollection 2019 Mar.

Abstract

West Nile virus (WNV)-a mosquito-borne arbovirus-entered the USA through New York City in 1999 and spread to the contiguous USA within three years while transitioning from epidemic outbreaks to endemic transmission. The virus is transmitted by vector competent mosquitoes and maintained in the avian populations. WNV spatial distribution is mainly determined by the movement of residential and migratory avian populations. We developed an individual-level heterogeneous network framework across the USA with the goal of understanding the long-range spatial distribution of WNV. To this end, we proposed three distance dispersal kernels model: 1) exponential-short-range dispersal, 2) power-law-long-range dispersal in all directions, and 3) power-law biased by flyway direction -long-range dispersal only along established migratory routes. To select the appropriate dispersal kernel we used the human case data and adopted a model selection framework based on approximate Bayesian computation with sequential Monte Carlo sampling (ABC-SMC). From estimated parameters, we find that the power-law biased by flyway direction kernel is the best kernel to fit WNV human case data, supporting the hypothesis of long-range WNV transmission is mainly along the migratory bird flyways. Through extensive simulation from 2014 to 2016, we proposed and tested hypothetical mitigation strategies and found that mosquito population reduction in the infected states and neighboring states is potentially cost-effective.

摘要

西尼罗河病毒(WNV)是一种经蚊子传播的虫媒病毒,于 1999 年通过纽约市进入美国,并在三年内传播到美国各地,从流行爆发转变为地方性传播。该病毒由媒介传播能力强的蚊子传播,并在禽类中维持。WNV 的空间分布主要由居住和迁徙的禽类种群的运动决定。我们在美国建立了一个个体水平的异质网络框架,旨在了解 WNV 的远程空间分布。为此,我们提出了三种距离扩散核模型:1)指数短程扩散,2)各向同性的幂律长程扩散,3)沿候鸟迁徙路线的偏向性幂律长程扩散。为了选择合适的扩散核,我们使用了人类病例数据,并采用了基于近似贝叶斯计算的模型选择框架,采用序贯蒙特卡罗抽样(ABC-SMC)。从估计的参数中,我们发现,偏向候鸟迁徙路线的幂律核是拟合 WNV 人类病例数据的最佳核,支持了长距离 WNV 传播主要沿候鸟迁徙路线的假说。通过 2014 年至 2016 年的广泛模拟,我们提出并测试了假设的缓解策略,发现减少感染州和邻近州的蚊子数量可能具有成本效益。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/063b/6433293/1115768dd8e1/pcbi.1006875.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验