Suppr超能文献

缺氧条件下具有细胞毒性的应变光解钌(II)配合物。

Strained, Photoejecting Ru(II) Complexes that are Cytotoxic Under Hypoxic Conditions.

机构信息

Department of Chemistry and Biochemistry, The University of North Carolina at Greensboro, Greensboro, NC.

Department of Chemistry, University of Kentucky, Lexington, KY.

出版信息

Photochem Photobiol. 2020 Mar;96(2):327-339. doi: 10.1111/php.13174. Epub 2019 Dec 6.

Abstract

A series of strained Ru(II) complexes were studied for potential anticancer activity in hypoxic tissues. The complexes were constructed with methylated ligands that were photolabile and an imidizo[4,5-f][1,10]phenanthroline ligand that contained an appended aromatic group to potentially allow for contributions of ligand-centered excited states. A systematic variation of the size and energy of the aromatic group was performed using systems containing 1-4 fused rings, and the photochemical and photobiological behaviors of all complexes were assessed. The structure and nature of the aromatic group had a subtle impact on photochemistry, altering environmental sensitivity, and had a significant impact on cellular cytotoxicity and photobiology. Up to 5-fold differences in cytotoxicity were observed in the absence of light activation; this rose to 50-fold differences upon exposure to 453 nm light. Most significantly, one complex retained activity under conditions with 1% O , which is used to induce hypoxic changes. This system exhibited a photocytotoxicity index (PI) of 15, which is in marked contrast to most other Ru(II) complexes, including those designed for O -independent mechanisms of action.

摘要

一系列紧张的 Ru(II) 配合物被研究用于缺氧组织的潜在抗癌活性。这些配合物是由光不稳定的甲基化配体和咪唑并[4,5-f][1,10]菲咯啉配体构建而成,后者带有附加的芳基基团,可能允许配体中心激发态的贡献。使用含有 1-4 个稠合环的系统,系统地改变了芳基基团的大小和能量,评估了所有配合物的光化学和光生物学行为。芳基基团的结构和性质对光化学有细微的影响,改变了环境敏感性,并对细胞毒性和光生物学有显著影响。在没有光激活的情况下,观察到细胞毒性差异高达 5 倍;而在暴露于 453nm 光下,差异增加到 50 倍。最重要的是,一个配合物在 1%O 2 的条件下保持活性,O 2 用于诱导缺氧变化。该系统表现出 15 的光细胞毒性指数(PI),与大多数其他 Ru(II) 配合物形成鲜明对比,包括那些设计用于 O 2 独立作用机制的配合物。

相似文献

1
Strained, Photoejecting Ru(II) Complexes that are Cytotoxic Under Hypoxic Conditions.
Photochem Photobiol. 2020 Mar;96(2):327-339. doi: 10.1111/php.13174. Epub 2019 Dec 6.
3
Photochemical and Photobiological Activity of Ru(II) Homoleptic and Heteroleptic Complexes Containing Methylated Bipyridyl-type Ligands.
Inorg Chem. 2017 Oct 16;56(20):12214-12223. doi: 10.1021/acs.inorgchem.7b01642. Epub 2017 Sep 26.
7
Recent developments in ruthenium anticancer drugs.
Metallomics. 2009 Nov;1(6):458-70. doi: 10.1039/b904071d. Epub 2009 Aug 13.
8

引用本文的文献

1
Ru(II) Oligothienyl Complexes with Fluorinated Ligands: Photophysical, Electrochemical, and Photobiological Properties.
Inorg Chem. 2024 May 27;63(21):9735-9752. doi: 10.1021/acs.inorgchem.3c04382. Epub 2024 May 10.
2
Photochemistry of Ru(II) Triazole Complexes with 6-Membered Chelate Ligands: Detection and Reactivity of Ligand-Loss Intermediates.
Inorg Chem. 2024 May 20;63(20):9084-9097. doi: 10.1021/acs.inorgchem.4c00251. Epub 2024 May 3.
3
Ru(II) Phenanthroline-Based Oligothienyl Complexes as Phototherapy Agents.
Inorg Chem. 2023 Dec 25;62(51):21181-21200. doi: 10.1021/acs.inorgchem.3c03216. Epub 2023 Dec 11.
4
Ruthenium-Based Photoactivated Chemotherapy.
J Am Chem Soc. 2023 Nov 1;145(43):23397-23415. doi: 10.1021/jacs.3c01135. Epub 2023 Oct 17.
5
A near-infrared light-activatable Ru(ii)-coumarin photosensitizer active under hypoxic conditions.
Chem Sci. 2023 Jun 8;14(26):7170-7184. doi: 10.1039/d3sc01844j. eCollection 2023 Jul 5.
7
Steric hindrance, ligand ejection and associated photocytotoxic properties of ruthenium(II) polypyridyl complexes.
J Biol Inorg Chem. 2023 Jun;28(4):403-420. doi: 10.1007/s00775-023-01998-z. Epub 2023 Apr 15.
9
Ru(II) CONTAINING PHOTOSENSITIZERS FOR PHOTODYNAMIC THERAPY: A CRITIQUE ON REPORTING AND AN ATTEMPT TO COMPARE EFFICACY.
Coord Chem Rev. 2022 Nov 1;470. doi: 10.1016/j.ccr.2022.214712. Epub 2022 Jul 26.

本文引用的文献

1
New players in phototherapy: photopharmacology and bio-integrated optoelectronics.
Curr Opin Chem Biol. 2019 Jun;50:145-151. doi: 10.1016/j.cbpa.2019.03.013. Epub 2019 May 17.
6
From curiosity to applications. A personal perspective on inorganic photochemistry.
Chem Sci. 2016 May 1;7(5):2964-2986. doi: 10.1039/c6sc00188b. Epub 2016 Feb 12.
7
Why develop photoactivated chemotherapy?
Dalton Trans. 2018 Aug 21;47(31):10330-10343. doi: 10.1039/c8dt01585f. Epub 2018 Jul 6.
8
Cyclometalated Ruthenium(II) Complexes Derived from α-Oligothiophenes as Highly Selective Cytotoxic or Photocytotoxic Agents.
Inorg Chem. 2018 Jul 2;57(13):7694-7712. doi: 10.1021/acs.inorgchem.8b00689. Epub 2018 Jun 21.
10
A Red-Light-Activated Ruthenium-Caged NAMPT Inhibitor Remains Phototoxic in Hypoxic Cancer Cells.
Angew Chem Int Ed Engl. 2017 Sep 11;56(38):11549-11553. doi: 10.1002/anie.201703890. Epub 2017 Aug 9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验