Mazuryk Olga, Janczy-Cempa Ewelina, Łagosz Justyna, Rutkowska-Zbik Dorota, Machnicka Agata, Krasowska Aneta, Pietrzyk Piotr, Stochel Grażyna, Brindell Małgorzata
Department of Inorganic Chemistry, Faculty of Chemistry, Jagiellonian University in Kraków, Gronostajowa 2, 30-387 Krakow, Poland.
Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, 30-239 Krakow, Poland.
Dalton Trans. 2022 Feb 1;51(5):1888-1900. doi: 10.1039/d1dt02908h.
The purpose of this study was to investigate the correlation between the spectroscopic and photophysical properties of Ru(II) polypyridyl complexes and their photodynamic activity . A series of Ru(II) polypyridyl complexes with 4,7-diphenyl-1,10-phenanthroline (dip) and 2,3-bis(2-pyridyl)quinoxaline (dpq) and its derivatives were synthesized and characterized regarding their photophysical, biological, and photodynamic properties. The complexes were evaluated not only in the context of O generation but also regarding other types of reactive oxygen species (ROS) to assess the possibility of Ru(II) complexes to induce phototoxicity various ROS using fluorescence and EPR spectroscopy. The compounds were found to be moderately cytotoxic with IC values ranging from 1 to 35 μM and retained their cytotoxic activity under hypoxic conditions. The unraveled phototoxic activity is based mainly on the generation of HO and O, highlighting the importance of electron-transfer processes in the observed photodynamic activity of Ru polypyridyl complexes. A combination of photodynamic activity with cytotoxicity under decreased dioxygen concentrations may help overcome the current photodynamic therapy (PDT) limitation. The findings highlight the need for broadening the scope of tested Ru-based photosensitizers.
本研究的目的是探究钌(II)多吡啶配合物的光谱和光物理性质与其光动力活性之间的相关性。合成了一系列含有4,7-二苯基-1,10-菲咯啉(dip)和2,3-双(2-吡啶基)喹喔啉(dpq)及其衍生物的钌(II)多吡啶配合物,并对其光物理、生物学和光动力性质进行了表征。不仅在单线态氧生成的背景下对这些配合物进行了评估,还针对其他类型的活性氧(ROS)进行了评估,以利用荧光和电子顺磁共振光谱法评估钌(II)配合物诱导多种ROS产生光毒性的可能性。发现这些化合物具有中等细胞毒性,IC值范围为1至35 μM,并且在缺氧条件下仍保留其细胞毒性活性。所揭示的光毒性活性主要基于羟基自由基(HO)和单线态氧(O)的产生,突出了电子转移过程在观察到的钌多吡啶配合物光动力活性中的重要性。在降低的氧气浓度下,光动力活性与细胞毒性的结合可能有助于克服当前光动力疗法(PDT)的局限性。这些发现突出了拓宽测试钌基光敏剂范围的必要性。