Center for Energy Storage Research, Korea Institute of Science and Technology, Hwarangno 14-gil 5, Seongbuk-gu, Seoul 02792, Republic of Korea.
School of Chemical Engineering, Stanford University, Stanford, CA 94305, USA.
Sci Adv. 2019 Oct 25;5(10):eaax5587. doi: 10.1126/sciadv.aax5587. eCollection 2019 Oct.
Rechargeable electrochemical cells with metallic anodes are of increasing scientific and technological interest. The complex composition, poorly defined morphology, heterogeneous chemistry, and unpredictable mechanics of interphases formed spontaneously on the anodes are often examined but rarely controlled. Here, we couple computational studies with experimental analysis of well-defined LiAl electrodes in realistic electrochemical environments to design anodes and interphases of known composition. We compare phase behavior, Li binding energies, and activation energy barriers for adatom transport and study their effects on the electrochemical reversibility of battery cells. As an illustration of potential practical benefits of our findings, we create cells in which LiAl anodes protected by Langmuir-Blodgett MoS interphases are paired with 4.1 mAh cm LiNiCoMnO cathodes. These studies reveal that small- and larger-format (196 mAh, 294 Wh kg, and 513 Wh liter) cells based on protected LiAl anodes exhibit high reversibility and support stable Li migration during recharge of the cells.
具有金属阳极的可充电电化学电池越来越受到科学和技术的关注。在阳极上自发形成的复杂组成、定义不明确的形态、不均匀的化学性质和不可预测的界面力学通常会被研究,但很少被控制。在这里,我们将计算研究与在实际电化学环境中对定义明确的 LiAl 电极的实验分析相结合,以设计具有已知组成的阳极和界面。我们比较了相行为、Li 结合能和 adatoms 输运的活化能垒,并研究了它们对电池电化学可逆性的影响。作为我们研究结果的潜在实际应用的一个例子,我们创建了由受 Langmuir-Blodgett MoS 界面保护的 LiAl 阳极与 4.1 mAh cm LiNiCoMnO 阴极配对的电池。这些研究表明,基于受保护 LiAl 阳极的小型和大型电池(196 mAh、294 Wh kg 和 513 Wh liter)具有高可逆性,并在电池充电过程中支持 Li 的稳定迁移。