Xu Fei, Qu Changzhen, Lu Qiongqiong, Meng Jiashen, Zhang Xiuhai, Xu Xiaosa, Qiu Yuqian, Ding Baichuan, Yang Jiaying, Cao Fengren, Yang Penghui, Jiang Guangshen, Kaskel Stefan, Ma Jingyuan, Li Liang, Zhang Xingcai, Wang Hongqiang
State Key Laboratory of Solidification Processing, Center for Nano Energy Materials, School of Materials Science and Engineering, Northwestern Polytechnical University and Shaanxi Joint Laboratory of Graphene (NPU), Xi'an 710072, P. R. China.
Leibniz Institute for Solid State and Materials Research (IFW) Dresden e.V. Helmholtzstr 20, Dresden 01069, Germany.
Sci Adv. 2022 May 13;8(19):eabm7489. doi: 10.1126/sciadv.abm7489. Epub 2022 May 11.
Constructing robust nucleation sites with an ultrafine size in a confined environment is essential toward simultaneously achieving superior utilization, high capacity, and long-term durability in Na metal-based energy storage, yet remains largely unexplored. Here, we report a previously unexplored design of spatially confined atomic Sn in hollow carbon spheres for homogeneous nucleation and dendrite-free growth. The designed architecture maximizes Sn utilization, prevents agglomeration, mitigates volume variation, and allows complete alloying-dealloying with high-affinity Sn as persistent nucleation sites, contrary to conventional spatially exposed large-size ones without dealloying. Thus, conformal deposition is achieved, rendering an exceptional capacity of 16 mAh cm in half-cells and long cycling over 7000 hours in symmetric cells. Moreover, the well-known paradox is surmounted, delivering record-high Na utilization (e.g., 85%) and large capacity (e.g., 8 mAh cm) while maintaining extraordinary durability over 5000 hours, representing an important breakthrough for stabilizing Na anode.
在受限环境中构建具有超细尺寸的稳健成核位点对于在基于钠金属的储能中同时实现卓越的利用率、高容量和长期耐久性至关重要,但在很大程度上仍未得到探索。在此,我们报告了一种以前未探索过的设计,即在空心碳球中实现空间受限的原子锡,以实现均匀成核和无枝晶生长。所设计的结构最大限度地提高了锡的利用率,防止团聚,减轻体积变化,并允许与具有高亲和力的锡进行完全合金化-脱合金化,作为持久的成核位点,这与传统的无脱合金化的空间暴露大尺寸位点相反。因此,实现了保形沉积,在半电池中具有16 mAh cm的卓越容量,在对称电池中可进行超过7000小时的长循环。此外,克服了众所周知的矛盾,在保持超过5000小时的非凡耐久性的同时,实现了创纪录的高钠利用率(例如85%)和大容量(例如8 mAh cm),这代表了稳定钠阳极的一个重要突破。