Departamento de Química Inorgánica, Analítica y Química Física, Facultad de Ciencias Exactas y Naturales , Universidad de Buenos Aires (INQUIMAE-UBA-CONICET) , Pabellón 2, 3er piso, Ciudad Universitaria , C1428EHA Ciudad Autónoma de Buenos Aires , Argentina.
Laboratório de Estudos Computacionais em Sistemas Moleculares, Departamento de Química, ICEx , Universidade Federal de Minas Gerais , 31270-901 Belo Horizonte , Minas Gerais , Brazil.
Inorg Chem. 2019 Nov 18;58(22):14981-14997. doi: 10.1021/acs.inorgchem.9b01978. Epub 2019 Nov 6.
The redox chemistry of HS with NO and other oxidants containing the NO group is discussed on a mechanistic basis because of the expanding interest in their biological relevance, with an eye open to the chemical differences of HS and thiols RSH. We focus on the properties of two "crosstalk" intermediates, SNO (thionitrite) and SSNO (perthionitrite, nitrosodisulfide) based in the largely controversial status on their identity and chemistry in aqueous/nonaqueous media, en route to the final products NO, NO, NHOH/NH, and S. Thionitrous acid, generated either in the direct reaction of NO + HS or through the transnitrosation of RSNO's (nitrosothiols) with HS at pH 7.4, is best described as a mixture of rapidly interconverting isomers, {(H)SNO}. It is reactive in different competitive modes, with a half-life of a few seconds at pH 7.4 for homolytic cleavage of the N-S bond, and could be deprotonated at pH values of up to ca. 10, giving SNO, a less reactive species than {(H)SNO}. The latter mixture can also react with HS, giving HNO and HS (hydrogen disulfide), a S(sulfane)-transfer reagent toward {(H)SNO}, leading to SSNO, a moderately stable species that slowly decomposes in aqueous sulfide-containing solutions in the minute-hour time scale, depending on [O]. The previous characterization of HSNO/SNO and SSNO is critically discussed based on the available chemical and spectroscopic evidence (mass spectrometry, UV-vis, N NMR, Fourier transform infrared), together with computational studies including quantum mechanics/molecular mechanics molecular dynamics simulations that provide a structural and UV-vis description of the solvatochromic properties of -SSNO acting as an electron donor in water, alcohols, and aprotic acceptor solvents. In this way, SSNO is confirmed as the elusive "yellow intermediate" (I) emerging in the aqueous crosstalk reactions, in contrast with its assignment to polysulfides, HS. The analysis extends to the coordination abilities of {(H)SNO}, SNO, and SSNO into heme and nonheme iron centers, providing a basis for best unraveling their putative specific signaling roles.
HS 与含有 NO 基团的其他氧化剂的氧化还原化学是基于机制讨论的,因为人们对其生物学相关性的兴趣不断扩大,同时也注意到 HS 和硫醇 RSH 的化学差异。我们专注于两种“串扰”中间体 SNO(亚硝硫醇)和 SSNO(过硫代亚硝酸盐,亚硝酰二硫代物)的性质,这两种中间体的身份和化学性质在水/非水介质中存在很大争议,这是通往最终产物 NO、NO、NHOH/NH 和 S 的途径。亚硝硫醇酸,无论是在 NO + HS 的直接反应中生成,还是通过 RSNO(亚硝硫醇)与 HS 在 pH 7.4 下的 transnitrosation 生成,最好被描述为快速互变异构体的混合物,即{(H)SNO}。它以不同的竞争模式反应,在 pH 7.4 下,N-S 键的均裂半衰期为几秒钟,并且可以在 pH 值高达约 10 时被去质子化,生成比{(H)SNO}反应性更小的 SNO 物种。后者混合物也可以与 HS 反应,生成 HNO 和 HS(氢二硫化物),一种向{(H)SNO}转移 S(sulfane)的试剂,生成 SSNO,这是一种在水合硫化物溶液中缓慢分解的中等稳定物种,分钟到小时的时间尺度取决于[O]。基于现有的化学和光谱证据(质谱、紫外-可见、N 核磁共振、傅里叶变换红外),以及包括量子力学/分子力学分子动力学模拟的计算研究,对 HSNO/SNO 和 SSNO 的先前表征进行了批判性讨论,这些研究提供了 SSNO 作为水中、醇中和非质子受体溶剂中电子供体的溶剂化变色性质的结构和紫外-可见描述。通过这种方式,SSNO 被确认为在水相串扰反应中出现的难以捉摸的“黄色中间体”(I),与将其分配给多硫化物 HS 的方式形成对比。该分析扩展到{(H)SNO}、SNO 和 SSNO 与血红素和非血红素铁中心的配位能力,为揭示它们可能的特定信号作用提供了基础。