亚硝基铁氰化钠调控干旱胁迫下番茄植株的氧化和硝化过程。

Sodium nitroprusside modulates oxidative and nitrosative processes in Lycopersicum esculentum L. under drought stress.

机构信息

Soil Science and Plant Nutrition Department, Harran University, Şanlıurfa, 63200, Turkey.

Department of Botany, University of Delhi, New Delhi, Delhi, 110007, India.

出版信息

Plant Cell Rep. 2024 May 28;43(6):152. doi: 10.1007/s00299-024-03238-3.

Abstract

Sodium nitroprusside mediates drought stress responses in tomatoes by modulating nitrosative and oxidative pathways, highlighting the interplay between nitric oxide, hydrogen sulfide, and antioxidant systems for enhanced drought tolerance. While nitric oxide (NO), a signalling molecule, enhances plant tolerance to abiotic stresses, its precise contribution to improving tomato tolerance to drought stress (DS) through modulating oxide-nitrosative processes is not yet fully understood. We aimed to examine the interaction of NO and nitrosative signaling, revealing how sodium nitroprusside (SNP) could mitigate the effects of DS on tomatoes. DS-seedlings endured 12% polyethylene glycol (PEG) in a 10% nutrient solution (NS) for 2 days, then transitioned to half-strength NS for 10 days alongside control plants. DS reduced total plant dry weight, chlorophyll a and b, Fv/Fm, leaf water potential (Ψ), and relative water content, but improved hydrogen peroxide (HO), proline, and NO content. The SNP reduced the DS-induced HO generation by reducing thiol (-SH) and the carbonyl (-CO) groups. SNP increased not only NO but also the activity of L-cysteine desulfhydrase (L-DES), leading to the generation of HS. Decreases in S-nitrosoglutathione reductase (GSNOR) and NADPH oxidase (NOX) suggest a potential regulatory mechanism in which -nitrosylation [formation of S-nitrosothiol (SNO)] may influence protein function and signaling pathways during DS. Moreover, SNP improved ascorbate (AsA) and glutathione (GSH) and reduced oxidized glutathione (GSSG) levels in tomato plants under drought. Furthermore, the interaction of NO and HS, mediated by L-DES activity, may serve as a vital cross-talk mechanism impacting plant responses to DS. Understanding these signaling interactions is crucial for developing innovative drought-tolerance strategies in crops.

摘要

硝普钠通过调节硝化和氧化途径介导番茄对干旱胁迫的响应,突出了一氧化氮、硫化氢和抗氧化系统之间的相互作用,以提高耐旱性。虽然一氧化氮(NO)作为一种信号分子增强了植物对非生物胁迫的耐受性,但它通过调节氧化硝化过程来提高番茄对干旱胁迫(DS)耐受性的确切贡献尚不完全清楚。我们旨在研究 NO 和硝化信号之间的相互作用,揭示硝普钠(SNP)如何减轻 DS 对番茄的影响。DS 幼苗在 10%的营养液(NS)中 12%的聚乙二醇(PEG)中耐受 2 天,然后与对照植物一起在半强度 NS 中再耐受 10 天。DS 降低了总植物干重、叶绿素 a 和 b、Fv/Fm、叶片水势(Ψ)和相对水含量,但提高了过氧化氢(HO)、脯氨酸和 NO 含量。SNP 通过减少巯基(-SH)和羰基(-CO)基团减少了 DS 诱导的 HO 生成。SNP 不仅增加了 NO,还增加了 L-半胱氨酸脱巯基酶(L-DES)的活性,从而产生 HS。S-亚硝基谷胱甘肽还原酶(GSNOR)和 NADPH 氧化酶(NOX)的减少表明,在 DS 期间,-亚硝基化(形成 S-亚硝硫醇(SNO))可能影响蛋白质功能和信号通路的潜在调节机制。此外,SNP 改善了干旱条件下番茄植物中抗坏血酸(AsA)和谷胱甘肽(GSH)的含量,并降低了氧化谷胱甘肽(GSSG)的水平。此外,L-DES 活性介导的 NO 和 HS 的相互作用可能是影响植物对 DS 响应的重要交叉对话机制。了解这些信号相互作用对于开发作物创新耐旱策略至关重要。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b7ed/11133051/b7af830bb1df/299_2024_3238_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索