Suppr超能文献

目标检测与识别:深度学习助力视障人士。

Object detection and recognition: using deep learning to assist the visually impaired.

机构信息

School of Computing and Mathematics, Charles Sturt University, Sydney, Australia.

出版信息

Disabil Rehabil Assist Technol. 2021 Apr;16(3):280-288. doi: 10.1080/17483107.2019.1673834. Epub 2019 Nov 6.

Abstract

BACKGROUND

Deep learning systems have improved performance of devices through more accurate object detection in a significant number of areas, for medical aid in general, and also for navigational aids for the visually impaired. Systems addressing different needs are available, and many manage effectively the detection of static obstacles.

PURPOSE

This research provides a review of deep learning systems used with navigational tools for the visually Impaired and a framework for guidance for future research.

METHODS

We compare current deep learning systems used with navigational tools for the visually impaired and compile a taxonomy of indispensable features for systems.

RESULTS

Challenges to detection. Our taxonomy of improved navigational systems shows that it is sufficiently robust to be generally applied.

CONCLUSION

This critical analysis is, to the best of our knowledge, the first of its kind and will provide a much-needed overview of the field.Implication for RehabilitationDeep learning systems can provide lost cost solutions for the visually impaired.Of these, convolutional neural networks (CNN) and fully convolutional neural networks (FCN) show great promise in terms of the development of multifunctional technology for the visually impaired (i.e., being less specific task oriented).CNN have also potential for overcoming challenges caused by moving and occluded objects.This work has also highlighted a need for greater emphasis on feedback to the visually impaired which for many technologies is limited.

摘要

背景

深度学习系统通过在大量领域中更准确地进行目标检测,提高了设备的性能,这对医疗救助,以及为视障人士提供导航辅助都有帮助。针对不同需求的系统已经出现,其中许多系统能够有效地检测静态障碍物。

目的

本研究综述了用于视障人士导航工具的深度学习系统,并为未来的研究提供了一个指导框架。

方法

我们比较了当前用于视障人士导航工具的深度学习系统,并对系统必不可少的功能进行了分类。

结果

检测的挑战。我们的改进型视障导航系统分类法表明,它具有足够的鲁棒性,可以普遍应用。

结论

据我们所知,这是此类批判性分析的首例,将对视障领域提供急需的概述。

康复意义

深度学习系统可以为视障人士提供低成本的解决方案。在这些系统中,卷积神经网络(CNN)和全卷积神经网络(FCN)在为视障人士开发多功能技术方面显示出巨大的潜力(即,不太针对特定任务)。CNN 还有可能克服由移动物体和遮挡物体引起的挑战。这项工作还强调了需要对视障人士的反馈给予更大的重视,而许多技术对视障人士的反馈是有限的。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验