DTU Chemistry, Technical University of Denmark, DK-2800, Kongens Lyngby, Denmark.
DTU Chemistry, Technical University of Denmark, DK-2800, Kongens Lyngby, Denmark.
Arch Biochem Biophys. 2019 Dec 15;678:108168. doi: 10.1016/j.abb.2019.108168. Epub 2019 Nov 4.
Single-point mutations in the genes coding for amyloid precursor protein (APP) and presenilin 1 (PS1), the active subunit of γ-secretase that cleaves APP to produce Aβ, are the main causes of rare but severe familial Alzheimer's disease (fAD). Recent structures of the transmembrane parts of APP and γ-secretase with a fragment of APP bound enable us to study the origins of the pathogenicity of the single amino acid changes in the context of the actual enzyme-substrate complex, which has not previously been possible. We used the new structures as input for several state-of-the-art computational methods that predict the folding stability effect of mutations. We find that pathogenic mutations almost exclusively reduce the stability of the proteins. Since most "random" mutations of an evolutionarily optimized protein tend to destabilize, we also show that the APP mutations destabilize the complex-bound substrate more than the free substrate, indicating reduced affinity of APP to γ-secretase. We confirmed this using two other methods, BEATMUSIC and mCSM PPI, specifically developed for calculating binding affinities of mutants. Although pathogenic PS1 mutations destabilize the complex and substrate-free form to the same extent, they significantly destabilize the protein more than the control set of random mutations. We conclude that fAD mutations most likely reduce the stability of the protein-substrate complex and thus retention time of APP-C99, leading to premature release of longer toxic Aβ in accordance with the FIST model of Aβ production, whereas the observed general destabilization of the protein may reduce activity towards other substrates.
淀粉样前体蛋白(APP)和早老素 1(PS1)基因编码单点突变是导致罕见但严重家族性阿尔茨海默病(fAD)的主要原因。γ-分泌酶的活性亚基,该酶切割 APP 产生 Aβ,最近与 APP 结合片段的 APP 和 γ-分泌酶跨膜部分的结构使我们能够在实际酶-底物复合物的背景下研究单一氨基酸变化的致病性起源,这在以前是不可能的。我们使用新结构作为几种最先进的计算方法的输入,这些方法可预测突变对折叠稳定性的影响。我们发现致病性突变几乎完全降低了蛋白质的稳定性。由于进化优化蛋白的大多数“随机”突变往往会使其不稳定,因此我们还表明,APP 突变使结合底物的复合物更不稳定,而不是自由底物,这表明 APP 与 γ-分泌酶的亲和力降低。我们使用另外两种专门用于计算突变体结合亲和力的方法 BEATMUSIC 和 mCSM PPI 证实了这一点。虽然致病性 PS1 突变同样使复合物和无底物形式失稳,但与随机突变的对照集相比,它们使蛋白质失稳的程度更大。我们得出的结论是,fAD 突变最有可能降低蛋白-底物复合物的稳定性,从而保留 APP-C99 的时间更长,导致更长的毒性 Aβ 提前释放,符合 Aβ 产生的 FIST 模型,而观察到的蛋白质普遍失稳可能会降低对其他底物的活性。