Department of Physics, University of Washington, Seattle, Washington 98195, USA.
Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, USA.
Phys Rev Lett. 2019 Oct 25;123(17):177401. doi: 10.1103/PhysRevLett.123.177401.
In this Letter, we exploit recent breakthroughs in monochromated aberration-corrected scanning transmission electron microscopy (STEM) to resolve infrared plasmonic Fano antiresonances in individual nanofabricated disk-rod dimers. Using a combination of electron energy-loss spectroscopy and theoretical modeling, we investigate and characterize a subspace of the weak coupling regime between quasidiscrete and quasicontinuum localized surface plasmon resonances where infrared plasmonic Fano antiresonances appear. This work illustrates the capability of STEM instrumentation to experimentally observe nanoscale plasmonic responses that were previously the domain only of higher-resolution infrared spectroscopies.
在这封信件中,我们利用最近在单色像差校正扫描透射电子显微镜(STEM)方面的突破,来解析单个纳米制造的盘-棒二聚体中的红外等离子体 Fano 反共振。通过电子能量损失光谱学和理论建模的结合,我们研究并描述了准离散和准连续局域表面等离激元共振之间弱耦合区域的子空间,其中出现了红外等离子体 Fano 反共振。这项工作说明了 STEM 仪器的实验观察纳米级等离子体响应的能力,而这些响应以前仅属于更高分辨率的红外光谱学领域。