Max Planck Institute for the Structure and Dynamics of Matter, Luruper Chaussee 149, 22761 Hamburg, Germany.
J Chem Phys. 2019 Nov 7;151(17):174110. doi: 10.1063/1.5121820.
In the nonequilibrium Green's function approach, the approximation of the correlation self-energy at the second-Born level is of particular interest, since it allows for a maximal speed-up in computational scaling when used together with the generalized Kadanoff-Baym ansatz for the Green's function. The present day numerical time-propagation algorithms for the Green's function are able to tackle first principles simulations of atoms and molecules, but they are limited to relatively small systems due to unfavorable scaling of self-energy diagrams with respect to the basis size. We propose an efficient computation of the self-energy diagrams by using tensor-contraction operations to transform the internal summations into functions of external low-level linear algebra libraries. We discuss the achieved computational speed-up in transient electron dynamics in selected molecular systems.
在非平衡格林函数方法中,特别感兴趣的是关联自能在第二 Born 水平上的近似,因为当与格林函数的广义 Kadanoff-Baym 假设一起使用时,它允许在计算规模上实现最大的加速。目前,用于格林函数的数值时间传播算法能够处理原子和分子的第一性原理模拟,但由于自能图相对于基大小的不利缩放,它们仅限于相对较小的系统。我们通过使用张量收缩操作将内部求和转换为外部低级线性代数库的函数,提出了一种有效计算自能图的方法。我们讨论了在选定的分子系统中瞬态电子动力学中获得的计算加速。