Suppr超能文献

一种改进癌症患者肿瘤对间克隆相关概率估计的 EM 算法。

An EM algorithm to improve the estimation of the probability of clonal relatedness of pairs of tumors in cancer patients.

机构信息

Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, 485 Lexington Ave, 2nd floor, New York, NY, 10017, USA.

出版信息

BMC Bioinformatics. 2019 Nov 8;20(1):555. doi: 10.1186/s12859-019-3148-z.

Abstract

BACKGROUND

We previously introduced a random-effects model to analyze a set of patients, each of which has two distinct tumors. The goal is to estimate the proportion of patients for which one of the tumors is a metastasis of the other, i.e. where the tumors are clonally related. Matches of mutations within a tumor pair provide the evidence for clonal relatedness. In this article, using simulations, we compare two estimation approaches that we considered for our model: use of a constrained quasi-Newton algorithm to maximize the likelihood conditional on the random effect, and an Expectation-Maximization algorithm where we further condition the random-effect distribution on the data.

RESULTS

In some specific settings, especially with sparse information, the estimation of the parameter of interest is at the boundary a non-negligible number of times using the first approach, while the EM algorithm gives more satisfactory estimates. This is of considerable importance for our application, since an estimate of either 0 or 1 for the proportion of cases that are clonal leads to individual probabilities being 0 or 1 in settings where the evidence is clearly not sufficient for such definitive probability estimates.

CONCLUSIONS

The EM algorithm is a preferable approach for our clonality random-effect model. It is now the method implemented in our R package Clonality, making available an easy and fast way to estimate this model on a range of applications.

摘要

背景

我们之前介绍了一种随机效应模型,用于分析一组具有两个不同肿瘤的患者。目标是估计其中一个肿瘤是另一个肿瘤转移的患者比例,即肿瘤具有克隆相关性。肿瘤对中突变的匹配为克隆相关性提供了证据。在本文中,我们使用模拟比较了我们考虑用于模型的两种估计方法:使用约束拟牛顿算法在随机效应条件下最大化似然,以及期望最大化算法,其中我们进一步将随机效应分布条件化到数据上。

结果

在某些特定情况下,特别是在信息稀疏的情况下,使用第一种方法,感兴趣参数的估计在边界处是非零次数,而 EM 算法给出了更令人满意的估计。这对于我们的应用非常重要,因为在证据显然不足以进行此类确定性概率估计的情况下,比例的估计为 0 或 1 会导致个体概率为 0 或 1。

结论

EM 算法是我们克隆随机效应模型的首选方法。它现在是我们 R 包 Clonality 中实现的方法,为在一系列应用中估计此模型提供了一种简单快速的方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8035/6839069/d9560248ac42/12859_2019_3148_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验