Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, D-61231 Bad Nauheim, Germany;
DZHK German Centre for Cardiovascular Research, Partner Site Rhine-Main, D-61231 Bad Nauheim, Germany.
Proc Natl Acad Sci U S A. 2019 Nov 26;116(48):24115-24121. doi: 10.1073/pnas.1913905116. Epub 2019 Nov 8.
Atrial fibrillation (AF) is the most common type of cardiac arrhythmia. The major AF susceptibility locus 4q25 establishes long-range interactions with the promoter of , a transcription factor gene with critical functions during cardiac development. While many AF-linked loci have been identified in genome-wide association studies, mechanistic understanding into how genetic variants, including those at the 4q25 locus, increase vulnerability to AF is mostly lacking. Here, we show that loss of in zebrafish leads to adult cardiac phenotypes with substantial similarities to pathologies observed in AF patients, including arrhythmia, atrial conduction defects, sarcomere disassembly, and altered cardiac metabolism. These phenotypes are also observed in a subset of fish, mimicking the situation in humans. Most notably, the onset of these phenotypes occurs at an early developmental stage. Detailed analyses of loss- and gain-of-function embryonic hearts reveal changes in sarcomeric and metabolic gene expression and function that precede the onset of cardiac arrhythmia first observed at larval stages. We further find that antioxidant treatment of larvae significantly reduces the incidence and severity of cardiac arrhythmia, suggesting that metabolic dysfunction is an important driver of conduction defects. We propose that these early sarcomere and metabolic defects alter cardiac function and contribute to the electrical instability and structural remodeling observed in adult fish. Overall, these data provide insight into the mechanisms underlying the development and pathophysiology of some cardiac arrhythmias and importantly, increase our understanding of how developmental perturbations can predispose to functional defects in the adult heart.
心房颤动(AF)是最常见的心律失常类型。主要的 AF 易感基因座 4q25 与转录因子基因的启动子建立长程相互作用,该基因在心脏发育过程中具有关键功能。虽然在全基因组关联研究中已经确定了许多与 AF 相关的基因座,但对于遗传变异(包括 4q25 基因座中的变异)如何增加对 AF 的易感性的机制理解在很大程度上仍然缺乏。在这里,我们显示斑马鱼中的 缺失会导致成年心脏表型,这些表型与 AF 患者观察到的病理具有很大的相似性,包括心律失常、心房传导缺陷、肌节解体和心脏代谢改变。这些表型也在一部分 鱼中观察到,模拟了人类的情况。最值得注意的是,这些表型的出现发生在早期发育阶段。对 缺失和功能获得性胚胎心脏的详细分析揭示了肌节和代谢基因表达和功能的变化,这些变化先于在幼虫阶段首次观察到的心律失常的发生。我们进一步发现,对 幼虫进行抗氧化治疗可显著降低心律失常的发生率和严重程度,表明代谢功能障碍是传导缺陷的一个重要驱动因素。我们提出,这些早期的肌节和代谢缺陷改变了心脏功能,并导致成年鱼中观察到的电不稳定性和结构重塑。总体而言,这些数据提供了对一些心律失常的发展和病理生理学的潜在机制的深入了解,重要的是,增加了我们对发育干扰如何导致成年心脏功能缺陷的理解。