Department of Geosciences, Princeton University, Princeton, NJ 08544
Department of Geosciences, Princeton University, Princeton, NJ 08544.
Proc Natl Acad Sci U S A. 2019 Dec 3;116(49):24433-24439. doi: 10.1073/pnas.1908783116. Epub 2019 Nov 8.
In the past 3 billion years, significant volumes of carbonate with high carbon-isotopic ([Formula: see text]C) values accumulated on shallow continental shelves. These deposits frequently are interpreted as records of elevated global organic carbon burial. However, through the stoichiometry of primary production, organic carbon burial releases a proportional amount of [Formula: see text], predicting unrealistic rises in atmospheric [Formula: see text] during the 1 to 100 million year-long positive [Formula: see text]C excursions that punctuate the geological record. This carbon-oxygen paradox assumes that the [Formula: see text]C of shallow water carbonates reflects the [Formula: see text]C of global seawater-dissolved inorganic carbon (DIC). However, the [Formula: see text]C of modern shallow-water carbonate sediment is higher than expected for calcite or aragonite precipitating from seawater. We explain elevated [Formula: see text]C in shallow carbonates with a diurnal carbon cycle engine, where daily transfer of carbon between organic and inorganic reservoirs forces coupled changes in carbonate saturation ([Formula: see text]) and [Formula: see text]C of DIC. This engine maintains a carbon-cycle hysteresis that is most amplified in shallow, sluggishly mixed waters with high rates of photosynthesis, and provides a simple mechanism for the observed [Formula: see text]C-decoupling between global seawater DIC and shallow carbonate, without burying organic matter or generating O.
在过去的 30 亿年里,大量具有高碳同位素 ([Formula: see text]C) 值的碳酸盐在浅大陆架上积累。这些沉积物经常被解释为全球有机碳埋藏量增加的记录。然而,通过初级生产的化学计量,有机碳埋藏会释放出等量的[Formula: see text],这预测了在地质记录中短暂出现的正[Formula: see text]C excursion 期间,大气[Formula: see text]会出现不现实的上升,这个 excursion 的持续时间为 1 到 1000 万年。这种碳-氧悖论假设,浅水碳酸盐的[Formula: see text]C 反映了全球海水溶解无机碳 (DIC) 的[Formula: see text]C。然而,现代浅水碳酸盐沉积物的[Formula: see text]C 比从海水中沉淀的方解石或文石所预期的要高。我们用一个昼夜碳循环引擎来解释浅水中碳酸盐中升高的[Formula: see text]C,这个引擎每天在有机和无机碳库之间转移碳,迫使 DIC 的碳酸盐饱和度 ([Formula: see text]) 和[Formula: see text]C 发生耦合变化。这个引擎维持着碳循环滞后,在光合作用速率高、浅而混合缓慢的水域中,滞后被放大到最大程度,同时为观察到的全球海水 DIC 与浅碳酸盐之间的[Formula: see text]C 解耦提供了一个简单的机制,而不需要埋藏有机物或产生氧气。