Suppr超能文献

同沉积碳酸盐球粒和微亮晶的稳定碳同位素值记录了光合作用强度的时空变化。

Stable carbon isotope values of syndepositional carbonate spherules and micrite record spatial and temporal changes in photosynthesis intensity.

机构信息

Department of Geology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA.

Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA.

出版信息

Geobiology. 2022 Sep;20(5):667-689. doi: 10.1111/gbi.12509. Epub 2022 Jul 18.

Abstract

Marine and lacustrine carbonate minerals preserve carbon cycle information, and their stable carbon isotope values (δ C) are frequently used to infer and reconstruct paleoenvironmental changes. However, multiple processes can influence the δ C values of bulk carbonates, confounding the interpretation of these values in terms of conditions at the time of mineral precipitation. Co-existing carbonate forms may represent different environmental conditions, yet few studies have analyzed δ C values of syndepositional carbonate grains of varying morphologies to investigate their origins. Here, we combine stable isotope analyses, metagenomics, and geochemical modeling to interpret δ C values of syndepositional carbonate spherules (>500 μm) and fine-grained micrite (<63 μm) from a ~1600-year-long sediment record of a hypersaline lake located on the coral atoll of Kiritimati, Republic of Kiribati (1.9°N, 157.4°W). Petrographic, mineralogic, and stable isotope results suggest that both carbonate fractions precipitate in situ with minor diagenetic alterations. The δ C values of spherules are high compared to the syndepositional micrite and cannot be explained by mineral differences or external perturbations, suggesting a role for local biological processes. We use geochemical modeling to test the hypothesis that the spherules form in the surface microbial mat during peak diurnal photosynthesis when the δ C value of dissolved inorganic carbon is elevated. In contrast, we hypothesize that the micrite may precipitate more continuously in the water as well as in sub-surface, heterotrophic layers of the microbial mat. Both metagenome and geochemical model results support a critical role for photosynthesis in influencing carbonate δ C values. The down-core spherule-micrite offset in δ C values also aligns with total organic carbon values, suggesting that the difference in the δ C values of spherules and micrite may be a more robust, inorganic indicator of variability in productivity and local biological processes through time than the δ C values of individual carbonate forms.

摘要

海洋和湖泊碳酸盐矿物保存了碳循环信息,其稳定碳同位素值(δ C)常被用来推断和重建古环境变化。然而,多种过程会影响碳酸盐的 δ C 值,从而混淆了这些值在矿物沉淀时的条件解释。共存的碳酸盐形式可能代表不同的环境条件,但很少有研究分析过不同形态的同生碳酸盐颗粒的 δ C 值,以调查其成因。在这里,我们结合稳定同位素分析、宏基因组学和地球化学模拟,解释了位于基里巴斯共和国的珊瑚环礁基里蒂马蒂(1.9°N,157.4°W)的一个约 1600 年长的盐湖沉积物记录中同生碳酸盐球粒(>500 μm)和细粒微亮晶(<63 μm)的 δ C 值。岩相学、矿物学和稳定同位素结果表明,两种碳酸盐分数都以较小的成岩变化就地沉淀。与同生微亮晶相比,球粒的 δ C 值较高,不能用矿物差异或外部干扰来解释,这表明局部生物过程起了作用。我们使用地球化学模拟来检验这样一个假设,即球粒在白天光合作用高峰期形成于表面微生物席中,此时溶解无机碳的 δ C 值升高。相比之下,我们假设微亮晶可能更连续地在水中以及微生物席的地下、异养层中沉淀。宏基因组和地球化学模型的结果都支持光合作用对影响碳酸盐 δ C 值的关键作用。核心内球粒-微亮晶 δ C 值的偏移也与总有机碳值一致,这表明球粒和微亮晶的 δ C 值差异可能是一个比单个碳酸盐形式的 δ C 值更稳健的、指示生产力和局部生物过程随时间变化的无机指标。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4e44/9543828/d62d532430dd/GBI-20-667-g008.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验