Suppr超能文献

Effect of ultraviolet light on the expression of genes for human U1 RNA.

作者信息

Thirunavukkarasu C, Choudhury K, Ninichuck A J, Choudhury I, Eliceiri G L

机构信息

Department of Pathology, St. Louis University School of Medicine, Missouri 63104.

出版信息

J Cell Physiol. 1988 Oct;137(1):55-64. doi: 10.1002/jcp.1041370107.

Abstract

Two types of UV-light-induced inhibitions of the synthesis of small nuclear RNA species U1, U2, U3, U4, and U5 were described previously: an immediate inhibition and a separate, delayed suppression that requires 1-2 hr of postirradiation cell incubation and UV doses that are about tenfold lower. In the present report, U1 RNA transcription in isolated nuclei from HeLa cells, assayed by RNAase T1 protection, reproduced the delayed inhibition. The sizes of the protected RNA fragments suggest that it is the initiation of U1 RNA transcription that is blocked during this inhibition. Transient expression of a marked human U1 RNA gene that contains 425 and 92 nucleotides of the 5' and 3' flanking sequences, respectively, showed delayed, but not immediate inhibition (while the endogenous U1 RNA genes exhibited immediate suppression). This indicates that continuity of the U1 gene flanking sequences beyond those segments and/or chromosomal integration of the U1 gene are not needed for the delayed inhibition, but may be required for the immediate inhibition. Irradiation of a U1 RNA gene, followed by its injection into Xenopus laevis oocyte nuclei, did not reproduce the immediate or delayed inhibitions. This suggests that direct UV radiation damage to DNA in the U1 RNA gene region is not the critical lesion in either the immediate or delayed UV-light-induced inhibitions of U1 RNA synthesis. In addition, the RNAase T1 protection pattern of transcripts synthesized in isolated nuclei from nonirradiated HeLa cells suggests that these cells may produce small amounts of U1 RNA molecules with variant nucleotide sequences in the mature region of the transcript.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验