Suppr超能文献

使用标准护理术语识别护士对患者恶化的关注概念。

Identifying nurses' concern concepts about patient deterioration using a standard nursing terminology.

机构信息

Division of General Internal Medicine and Primary Care, Brigham & Women's Hospital, Boston, USA; Harvard Medical School, Boston, USA.

Division of General Internal Medicine and Primary Care, Brigham & Women's Hospital, Boston, USA; Harvard Medical School, Boston, USA.

出版信息

Int J Med Inform. 2020 Jan;133:104016. doi: 10.1016/j.ijmedinf.2019.104016. Epub 2019 Oct 31.

Abstract

OBJECTIVES

Nurse concerns documented in nursing notes are important predictors of patient risk of deterioration. Using a standard nursing terminology and inputs from subject-matter experts (SMEs), we aimed to identify and define nurse concern concepts and terms about patient deterioration, which can be used to support subsequent automated tasks, such as natural language processing and risk predication.

METHODS

Group consensus meetings with nurse SMEs were held to identify nursing concerns by grading Clinical Care Classification (CCC) system concepts based on clinical knowledge. Next, a fundamental lexicon was built placing selected CCC concepts into a framework of entities and seed terms to extend CCC granularity.

RESULTS

A total of 29 CCC concepts were selected as reflecting nurse concerns. From these, 111 entities and 586 seed terms were generated into a fundamental lexicon. Nursing concern concepts differed across settings (intensive care units versus non-intensive care units) and unit types (medicine versus surgery units).

CONCLUSIONS

The CCC concepts were useful for representing nursing concern as they encompass a nursing-centric conceptual framework and are practical in lexicon construction. It enabled the codification of nursing concerns for deteriorating patients at a standardized conceptual level. The boundary of selected CCC concepts and lexicons were determined by the SMEs. The fundamental lexicon offers more granular terms that can be identified and processed in an automated fashion.

摘要

目的

护理记录中记录的护士关注点是患者病情恶化风险的重要预测指标。我们使用标准护理术语和主题专家(SME)的输入,旨在识别和定义有关患者恶化的护士关注概念和术语,这些概念和术语可用于支持后续的自动化任务,例如自然语言处理和风险预测。

方法

通过基于临床知识对临床护理分类(CCC)系统概念进行分级,与护士 SME 举行小组共识会议以确定护理关注点。接下来,构建了一个基本词汇表,将选定的 CCC 概念置于实体和种子术语框架中,以扩展 CCC 的粒度。

结果

共选择了 29 个 CCC 概念作为反映护士关注点的概念。由此产生了 111 个实体和 586 个种子术语,构成了一个基本词汇表。护理关注点概念因设置(重症监护病房与非重症监护病房)和单位类型(内科与外科病房)而异。

结论

CCC 概念对于表示护理关注点非常有用,因为它们包含以护理为中心的概念框架,并且在词汇构建方面具有实用性。它使以标准化概念水平对恶化患者的护理关注点进行编码成为可能。选定的 CCC 概念和词汇的边界由 SME 确定。基本词汇表提供了更细粒度的术语,可以以自动化方式进行识别和处理。

相似文献

4
Translation and cross-cultural adaptation of the Clinical Care Classification system.临床护理分类系统的翻译与文化调适。
Int J Med Inform. 2021 Sep;153:104534. doi: 10.1016/j.ijmedinf.2021.104534. Epub 2021 Jul 16.

引用本文的文献

本文引用的文献

8
Natural language processing to identify foley catheter-days.
Infect Control Hosp Epidemiol. 2012 Dec;33(12):1270-2. doi: 10.1086/668424. Epub 2012 Oct 25.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验