Department of Oncology, Wayne State University School of Medicine/Karmanos Cancer Institute, Detroit, Michigan (A.S.D., J.F., A.W.-P., C.O., Z.H., S.K., L.H.M.); Division of Medicinal Chemistry, Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, Pennsylvania (M.J.N., K.S., A.G.); Center for Molecular Medicine and Genetics (H.K., M.H.) and Department of Pharmacology (L.H.M.), Wayne State University School of Medicine, Detroit, Michigan; Biochemistry and Molecular Biology, Jilin University, Changchun, Jilin Province, China (C.N.); and Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Detroit, Michigan (Z.H., S.K., M.H., L.H.M.).
Department of Oncology, Wayne State University School of Medicine/Karmanos Cancer Institute, Detroit, Michigan (A.S.D., J.F., A.W.-P., C.O., Z.H., S.K., L.H.M.); Division of Medicinal Chemistry, Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, Pennsylvania (M.J.N., K.S., A.G.); Center for Molecular Medicine and Genetics (H.K., M.H.) and Department of Pharmacology (L.H.M.), Wayne State University School of Medicine, Detroit, Michigan; Biochemistry and Molecular Biology, Jilin University, Changchun, Jilin Province, China (C.N.); and Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Detroit, Michigan (Z.H., S.K., M.H., L.H.M.)
Mol Pharmacol. 2020 Jan;97(1):9-22. doi: 10.1124/mol.119.117937. Epub 2019 Nov 9.
Folate-dependent one-carbon (C1) metabolism is compartmentalized in the mitochondria and cytosol and is a source of critical metabolites for proliferating tumors. Mitochondrial C1 metabolism including serine hydroxymethyltransferase 2 (SHMT2) generates glycine for de novo purine nucleotide and glutathione biosynthesis and is an important source of NADPH, ATP, and formate, which affords C1 units as 10-formyl-tetrahydrofolate and 5,10-methylene-tetrahydrofolate for nucleotide biosynthesis in the cytosol. We previously discovered novel first-in-class multitargeted pyrrolo[3,2-]pyrimidine inhibitors of SHMT2 and de novo purine biosynthesis at glycinamide ribonucleotide formyltransferase and 5-aminoimidazole-4-carboxamide ribonucleotide formyltransferase with potent in vitro and in vivo antitumor efficacy toward pancreatic adenocarcinoma cells. In this report, we extend our findings to an expanded panel of pancreatic cancer models. We used our lead analog [(4-(4-(2-amino-4-oxo-3,4-dihydro-5-pyrrolo[3,2-]pyrimidin-5-yl)butyl)-2-fluorobenzoyl)-l-glutamic acid] to characterize pharmacodynamic determinants of antitumor efficacy for this series and demonstrated plasma membrane transport into the cytosol, uptake from cytosol into mitochondria, and metabolism to polyglutamates in both cytosol and mitochondria. Antitumor effects of downstream of SHMT2 and purine biosynthesis included suppression of mammalian target of rapamycin signaling, and glutathione depletion with increased levels of reactive oxygen species. Our results provide important insights into the cellular pharmacology of novel pyrrolo[3,2-]pyrimidine inhibitors as antitumor compounds and establish as a unique agent for potential clinical application for pancreatic cancer, as well as other malignancies. SIGNIFICANCE STATEMENT: This study establishes the antitumor efficacies of novel inhibitors of serine hydroxymethyltransferase 2 and of cytosolic targets toward a panel of clinically relevant pancreatic cancer cells and demonstrates the important roles of plasma membrane transport, mitochondrial accumulation, and metabolism to polyglutamates of the lead compound to drug activity. We also establish that loss of serine catabolism and purine biosynthesis resulting from treatment impacts mammalian target of rapamycin signaling, glutathione pools, and reactive oxygen species, contributing to antitumor efficacy.
叶酸依赖的一碳(C1)代谢在线粒体和细胞质中进行分区,是增殖肿瘤的关键代谢物的来源。包括丝氨酸羟甲基转移酶 2(SHMT2)在内的线粒体 C1 代谢生成甘氨酸,用于从头嘌呤核苷酸和谷胱甘肽的生物合成,并且是 NADPH、ATP 和甲酸盐的重要来源,为细胞质中的核苷酸生物合成提供 C1 单位,如 10-甲酰基-四氢叶酸和 5,10-亚甲基-四氢叶酸。我们之前发现了新型的丝氨酸羟甲基转移酶 2 和从头嘌呤生物合成的第一类多靶嘧啶并[3,2-]嘧啶抑制剂,这些抑制剂抑制甘氨酰胺核苷酸 formyltransferase 和 5-氨基咪唑-4-羧酰胺核苷酸 formyltransferase,对胰腺腺癌细胞具有强大的体外和体内抗肿瘤功效。在本报告中,我们将研究结果扩展到一系列扩展的胰腺癌模型。我们使用我们的先导类似物[(4-(4-(2-氨基-4-氧代-3,4-二氢-5-吡咯并[3,2-]嘧啶-5-基)丁基)-2-氟苯甲酰基)-L-谷氨酸]来表征该系列药物的抗肿瘤功效的药效学决定因素,并证明了质膜向细胞质的转运,从细胞质到线粒体的摄取以及在细胞质和线粒体中代谢为多谷氨酸。丝氨酸羟甲基转移酶 2 和嘌呤生物合成下游的抗肿瘤作用包括抑制哺乳动物雷帕霉素靶蛋白信号传导以及谷胱甘肽耗竭,同时增加活性氧水平。我们的研究结果为新型吡咯并[3,2-]嘧啶抑制剂作为抗肿瘤化合物的细胞药理学提供了重要的见解,并确定[(4-(4-(2-氨基-4-氧代-3,4-二氢-5-吡咯并[3,2-]嘧啶-5-基)丁基)-2-氟苯甲酰基)-L-谷氨酸]作为潜在的临床应用的独特药物,适用于胰腺癌以及其他恶性肿瘤。意义:本研究确立了新型丝氨酸羟甲基转移酶 2 抑制剂和针对一组临床相关胰腺癌细胞的细胞质靶标对多种抑制剂的抗肿瘤功效,并证明了先导化合物[(4-(4-(2-氨基-4-氧代-3,4-二氢-5-吡咯并[3,2-]嘧啶-5-基)丁基)-2-氟苯甲酰基)-L-谷氨酸]向细胞质转运,向线粒体积累以及向多谷氨酸代谢的重要作用。我们还证明,由于[(4-(4-(2-氨基-4-氧代-3,4-二氢-5-吡咯并[3,2-]嘧啶-5-基)丁基)-2-氟苯甲酰基)-L-谷氨酸]治疗导致丝氨酸分解代谢和嘌呤生物合成的丧失,会影响哺乳动物雷帕霉素靶蛋白信号传导,谷胱甘肽库和活性氧,从而有助于抗肿瘤功效。