Mantovani Matteo, Combi Carlo, Hauskrecht Milos
Department of Computer Science, University of Verona, Italy.
Department of Computer Science, University of Pittsburgh, Pittsburgh, USA.
Artif Intell Med Conf Artif Intell Med (2005-). 2019 Jun;11526:386-396. doi: 10.1007/978-3-030-21642-9_49. Epub 2019 May 30.
In this paper, we develop a new framework for mining predictive patterns that aims to describe compactly the condition (or class) of interest. Our framework relies on a classification model that considers and combines various predictive pattern candidates and selects only those that are important for improving the overall class prediction performance. We test our approach on data derived from MIMIC-III EHR database, focusing on patterns predictive of sepsis. We show that using our classification approach we can achieve a significant reduction in the number of extracted patterns compared to the state-of-the-art methods based on minimum predictive pattern mining approach, while preserving the overall classification accuracy of the model.
在本文中,我们开发了一种用于挖掘预测模式的新框架,旨在紧凑地描述感兴趣的条件(或类别)。我们的框架依赖于一个分类模型,该模型考虑并组合各种预测模式候选者,只选择那些对提高整体类别预测性能很重要的模式。我们在从MIMIC-III电子健康记录数据库导出的数据上测试我们的方法,重点关注败血症的预测模式。我们表明,与基于最小预测模式挖掘方法的现有技术方法相比,使用我们的分类方法可以显著减少提取模式的数量,同时保持模型的整体分类准确性。