Batal Iyad, Valizadegan Hamed, Cooper Gregory F, Hauskrecht Milos
Department of Computer Science University of Pittsburgh.
Proceedings (IEEE Int Conf Bioinformatics Biomed). 2011 Nov 12;2011:358-365. doi: 10.1109/BIBM.2011.39.
We study the problem of learning classification models from complex multivariate temporal data encountered in electronic health record systems. The challenge is to define a good set of features that are able to represent well the temporal aspect of the data. Our method relies on temporal abstractions and temporal pattern mining to extract the classification features. Temporal pattern mining usually returns a large number of temporal patterns, most of which may be irrelevant to the classification task. To address this problem, we present the minimal predictive temporal patterns framework to generate a small set of predictive and non-spurious patterns. We apply our approach to the real-world clinical task of predicting patients who are at risk of developing heparin induced thrombocytopenia. The results demonstrate the benefit of our approach in learning accurate classifiers, which is a key step for developing intelligent clinical monitoring systems.
我们研究了从电子健康记录系统中遇到的复杂多变量时间数据学习分类模型的问题。挑战在于定义一组能够很好地表示数据时间方面的良好特征。我们的方法依赖于时间抽象和时间模式挖掘来提取分类特征。时间模式挖掘通常会返回大量的时间模式,其中大多数可能与分类任务无关。为了解决这个问题,我们提出了最小预测时间模式框架,以生成一小部分预测性和非虚假的模式。我们将我们的方法应用于预测有发生肝素诱导的血小板减少症风险的患者这一现实世界临床任务。结果证明了我们的方法在学习准确分类器方面的益处,这是开发智能临床监测系统的关键一步。