Suppr超能文献

一种用于对多变量时态数据进行分类的模式挖掘方法。

A Pattern Mining Approach for Classifying Multivariate Temporal Data.

作者信息

Batal Iyad, Valizadegan Hamed, Cooper Gregory F, Hauskrecht Milos

机构信息

Department of Computer Science University of Pittsburgh.

出版信息

Proceedings (IEEE Int Conf Bioinformatics Biomed). 2011 Nov 12;2011:358-365. doi: 10.1109/BIBM.2011.39.

Abstract

We study the problem of learning classification models from complex multivariate temporal data encountered in electronic health record systems. The challenge is to define a good set of features that are able to represent well the temporal aspect of the data. Our method relies on temporal abstractions and temporal pattern mining to extract the classification features. Temporal pattern mining usually returns a large number of temporal patterns, most of which may be irrelevant to the classification task. To address this problem, we present the minimal predictive temporal patterns framework to generate a small set of predictive and non-spurious patterns. We apply our approach to the real-world clinical task of predicting patients who are at risk of developing heparin induced thrombocytopenia. The results demonstrate the benefit of our approach in learning accurate classifiers, which is a key step for developing intelligent clinical monitoring systems.

摘要

我们研究了从电子健康记录系统中遇到的复杂多变量时间数据学习分类模型的问题。挑战在于定义一组能够很好地表示数据时间方面的良好特征。我们的方法依赖于时间抽象和时间模式挖掘来提取分类特征。时间模式挖掘通常会返回大量的时间模式,其中大多数可能与分类任务无关。为了解决这个问题,我们提出了最小预测时间模式框架,以生成一小部分预测性和非虚假的模式。我们将我们的方法应用于预测有发生肝素诱导的血小板减少症风险的患者这一现实世界临床任务。结果证明了我们的方法在学习准确分类器方面的益处,这是开发智能临床监测系统的关键一步。

相似文献

1
A Pattern Mining Approach for Classifying Multivariate Temporal Data.
Proceedings (IEEE Int Conf Bioinformatics Biomed). 2011 Nov 12;2011:358-365. doi: 10.1109/BIBM.2011.39.
2
A Temporal Pattern Mining Approach for Classifying Electronic Health Record Data.
ACM Trans Intell Syst Technol. 2013 Sep;4(4). doi: 10.1145/2508037.2508044.
3
An Efficient Pattern Mining Approach for Event Detection in Multivariate Temporal Data.
Knowl Inf Syst. 2016 Jan;46(1):115-150. doi: 10.1007/s10115-015-0819-6. Epub 2015 Jan 21.
8
Visually defining and querying consistent multi-granular clinical temporal abstractions.
Artif Intell Med. 2012 Feb;54(2):75-101. doi: 10.1016/j.artmed.2011.10.004. Epub 2011 Dec 15.

引用本文的文献

3
Domain Adaptation Using Convolutional Autoencoder and Gradient Boosting for Adverse Events Prediction in the Intensive Care Unit.
Front Artif Intell. 2022 Apr 11;5:640926. doi: 10.3389/frai.2022.640926. eCollection 2022.
5
Extended vertical lists for temporal pattern mining from multivariate time series.
Expert Syst. 2019 Oct;36(5). doi: 10.1111/exsy.12448. Epub 2019 Sep 9.
6
Improving Validity of Cause of Death on Death Certificates.
ACM BCB. 2018 Aug;2018:178-183. doi: 10.1145/3233547.3233581.
8
Methodological variations in lagged regression for detecting physiologic drug effects in EHR data.
J Biomed Inform. 2018 Oct;86:149-159. doi: 10.1016/j.jbi.2018.08.014. Epub 2018 Aug 30.
9
High-fidelity phenotyping: richness and freedom from bias.
J Am Med Inform Assoc. 2018 Mar 1;25(3):289-294. doi: 10.1093/jamia/ocx110.
10
Intelligent Mortality Reporting with FHIR.
IEEE EMBS Int Conf Biomed Health Inform. 2017 Feb;2017:181-184. doi: 10.1109/BHI.2017.7897235. Epub 2017 Mar 13.

本文引用的文献

1
Conditional outlier detection for clinical alerting.
AMIA Annu Symp Proc. 2010 Nov 13;2010:286-90.
2
Feature importance analysis for patient management decisions.
Stud Health Technol Inform. 2010;160(Pt 2):861-5.
3
Medical temporal-knowledge discovery via temporal abstraction.
AMIA Annu Symp Proc. 2009 Nov 14;2009:452-6.
5
Heparin-induced thrombocytopenia: pathogenesis and management.
Br J Haematol. 2003 May;121(4):535-55. doi: 10.1046/j.1365-2141.2003.04334.x.
6
Knowledge-based temporal abstraction in clinical domains.
Artif Intell Med. 1996 Jul;8(3):267-98. doi: 10.1016/0933-3657(95)00036-4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验