Batal Iyad, Fradkin Dmitriy, Harrison James, Moerchen Fabian, Hauskrecht Milos
Dept. of Computer Science, University of Pittsburgh,
Siemens Corporate Research,
KDD. 2012;2012:280-288. doi: 10.1145/2339530.2339578.
Improving the performance of classifiers using pattern mining techniques has been an active topic of data mining research. In this work we introduce the recent temporal pattern mining framework for finding predictive patterns for monitoring and event detection problems in complex multivariate time series data. This framework first converts time series into time-interval sequences of temporal abstractions. It then constructs more complex temporal patterns backwards in time using temporal operators. We apply our framework to health care data of 13,558 diabetic patients and show its benefits by efficiently finding useful patterns for detecting and diagnosing adverse medical conditions that are associated with diabetes.
使用模式挖掘技术提高分类器的性能一直是数据挖掘研究的一个活跃主题。在这项工作中,我们介绍了最近的时间模式挖掘框架,用于在复杂的多变量时间序列数据中寻找用于监测和事件检测问题的预测模式。该框架首先将时间序列转换为时间抽象的时间间隔序列。然后,它使用时间运算符在时间上向后构建更复杂的时间模式。我们将我们的框架应用于13558名糖尿病患者的医疗数据,并通过有效地找到用于检测和诊断与糖尿病相关的不良医疗状况的有用模式来展示其优势。