Department of Chemistry, Duke University, 124 Science Drive, Box 90354, Durham, North Carolina 27708, USA.
Nanoscale. 2019 Nov 21;11(45):21709-21723. doi: 10.1039/c9nr05782j.
Control over the nanoscopic structure of a material allows one to tune its properties for a wide variety of applications. Colloidal synthesis has become a convenient way to produce anisotropic metal nanostructures with a desired set of properties, but in most syntheses, the facet-selective surface chemistry causing anisotropic growth is not well-understood. This review highlights the recent use of electrochemical methods and single-crystal electrodes to investigate the roles of organic and inorganic additives in modulating the rate of atomic addition to different crystal facets. Differential capacitance and chronocoulometric techniques can be used to extract thermodynamic data on how additives selectively adsorb, while mixed potential theory can be used to observe the effect of additives on the rate of atomic addition to a specific facet. Results to date indicate that these experimental methods can provide new insights into the role capping agents and halides play in controlling anisotropic growth.
对材料的纳米结构的控制使得人们可以调整其性能以适应各种应用。胶体合成已成为生产具有所需性质的各向异性金属纳米结构的一种便捷方法,但在大多数合成中,导致各向异性生长的面选择性表面化学还没有得到很好的理解。这篇综述强调了最近使用电化学方法和单晶电极来研究有机和无机添加剂在调节不同晶面原子添加速率方面的作用。差分电容和计时库仑技术可用于提取添加剂选择性吸附的热力学数据,而混合电势理论可用于观察添加剂对特定晶面原子添加速率的影响。迄今为止的结果表明,这些实验方法可以为了解稳定剂和卤化物在控制各向异性生长中所起的作用提供新的见解。