Suppr超能文献

糖胺聚糖的酶促化学合成。

Chemoenzymatic Synthesis of Glycosaminoglycans.

机构信息

School of Food Science and Pharmaceutical Engineering , Nanjing Normal University , Nanjing 210023 , China.

School of Environment , Nanjing Normal University , Nanjing 210023 , China.

出版信息

Acc Chem Res. 2020 Feb 18;53(2):335-346. doi: 10.1021/acs.accounts.9b00420. Epub 2019 Nov 12.

Abstract

Glycosaminoglycans (GAGs) are a family of structurally complex heteropolysaccharides composed of alternating hexosamine and uronic acid or galatose residue that include hyaluronan, chondroitin sulfate and dermatan sulfate, heparin and heparan sulfate, and keratan sulfate. GAGs display a range of critical biological functions, including regulating cell-cell interactions and cell proliferation, inhibiting enzymes, and activating growth factor receptors during various metabolic processes. Indeed, heparin is a widely used GAG-based anticoagulant drug. Unfortunately, naturally derived GAGs are highly heterogeneous, limiting studies of their structure-activity relationships and even resulting in safety concerns. For example, the heparin contamination crisis in 2007 reportedly killed more than a hundred people in the United States. Unfortunately, the chemical synthesis of GAGs, or their oligosaccharides, based on repetitive steps of protection, activation, coupling, and deprotection, is incredibly challenging. Recent advances in chemoenzymatic synthesis integrate the flexibility of chemical derivatization with enzyme-catalyzed reactions, mimicking the biosynthetic pathway of GAGs, and represent a promising strategy to solve many of these synthetic challenges. In this critical Account, we examine the recent progress made, in our laboratory and by others, in the chemoenzymatic synthesis of GAGs, focusing on heparan sulfate and heparin, a class of GAGs with profound physiological and pharmacological importance. A major challenge for the penetration of the heparin market by homogeneous heparin products is their cost-effective large-scale synthesis. In the past decade, we and our collaborators have systematically explored the key factors that impact this process, including better enzyme expression, improved biocatalysts using protein engineering and immobilization, low cost production of enzyme cofactors, optimization of the order of enzymatic transformations, as well as development of efficient technologies, such as using ultraviolet absorbing or fluorous tags, to detect and purify synthetic intermediates. These improvements have successfully resulted in multigram-scale synthesis of low-molecular-weight heparins (LMWHs), with some showing excellent anticoagulant activity and even resulting in more effective protamine reversal than commercial, animal-sourced LMWH drugs. Sophisticated structural analysis is another challenge for marketing heparins, since impurities and contaminants can be present that are difficult to distinguish from heparin drug products. The availability of the diverse library of structurally defined heparin oligosaccharides has facilitated the systematic analytical studies undertaken by our group, resulting in important information for characterizing diverse heparin products, safeguarding their quality. Recently, a series of chemically modified nucleotide sugars have been investigated in our laboratory and have been accepted by synthases to obtain novel GAGs and GAG oligosaccharides. These include fluoride and azido regioselectively functionalized sugars and stable isotope-enriched GAGs and GAG oligosaccharides, critical for better understanding the biological roles of these important biopolymers. We speculate that the repertoire of unnatural acceptors and nucleotide sugar donors will soon be expanded to afford many new GAG analogues with new biological and pharmacological properties including improved specificity and metabolic stability.

摘要

糖胺聚糖(GAGs)是由交替的己糖胺和糖醛酸或半乳糖残基组成的结构复杂的杂多糖家族,包括透明质酸、硫酸软骨素和硫酸皮肤素、肝素和硫酸乙酰肝素以及硫酸角质素。GAGs 具有一系列关键的生物学功能,包括调节细胞-细胞相互作用和细胞增殖、抑制酶以及在各种代谢过程中激活生长因子受体。事实上,肝素是一种广泛使用的基于 GAG 的抗凝药物。不幸的是,天然来源的 GAGs 高度异质,限制了对其结构-活性关系的研究,甚至导致了安全性问题。例如,2007 年肝素污染危机据称导致美国有超过 100 人死亡。不幸的是,基于保护、激活、偶联和脱保护等重复步骤的 GAG 或其寡糖的化学合成极具挑战性。基于化学衍生化与酶催化反应相结合的化学酶合成的最新进展,模拟了 GAG 的生物合成途径,代表了解决许多这些合成挑战的有前途的策略。在这篇重要的综述中,我们检查了我们实验室和其他人在 GAG 化学酶合成方面的最新进展,重点是硫酸乙酰肝素和肝素,这是一类具有深远生理和药理重要性的 GAG。由均质肝素产品渗透肝素市场的主要挑战是其具有成本效益的大规模合成。在过去的十年中,我们和我们的合作者系统地研究了影响该过程的关键因素,包括更好的酶表达、使用蛋白质工程和固定化提高生物催化剂的性能、降低酶辅因子的生产成本、优化酶转化的顺序,以及开发高效技术,例如使用紫外线吸收或氟标记物来检测和纯化合成中间体。这些改进成功地实现了低分子量肝素(LMWH)的多克规模合成,其中一些具有优异的抗凝活性,甚至比商业的、动物源性的 LMWH 药物具有更好的鱼精蛋白逆转效果。复杂的结构分析是肝素营销的另一个挑战,因为可能存在难以与肝素药物产品区分的杂质和污染物。结构定义明确的肝素寡糖的广泛文库的可用性促进了我们小组进行的系统分析研究,为表征各种肝素产品提供了重要信息,确保了它们的质量。最近,我们实验室研究了一系列化学修饰的核苷酸糖,它们被合酶接受,以获得新型 GAG 和 GAG 寡糖。这些包括氟化物和叠氮基区域选择性功能化的糖以及稳定同位素标记的 GAG 和 GAG 寡糖,这对于更好地了解这些重要生物聚合物的生物学作用至关重要。我们推测,非天然受体和核苷酸糖供体的 repertoire 将很快扩大,以提供许多具有新生物学和药理学特性的新型 GAG 类似物,包括提高特异性和代谢稳定性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验