DeAngelis Paul L
Department of Biochemistry and Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA.
Proteoglycan Res. 2024 Oct-Dec;2(4). doi: 10.1002/pgr2.70000. Epub 2024 Oct 6.
Hyaluronan (HA; [-3-GlcNAc-1-beta-4-GlcA-1-beta] ), an essential matrix polysaccharide of vertebrates and the molecular camouflage coating in certain pathogens, is polymerized by "HA synthase" (HAS) enzymes. Three HAS classes have been identified with biotechnological utility, but only the Class II PmHAS from Type A has been useful for preparation of very defined HA polymers in vitro. Two general chemoenzymatic strategies with different size products are possible: (1) repetitive step-wise extension reactions by sequential addition of a single monosaccharide from a donor UDP-sugar onto an acceptor (or "primer") comprised of a short glycosaminoglycan chain (e.g., HA di-, tri- or tetrasaccharide) or an artificial glucuronide yielding homogeneous oligosaccharides in the range of 2 to ~20 monosaccharide units ( = 1 to ~10), or (2) "one-pot" polymerization reactions employing acceptor-mediated synchronization with stoichiometric size control yielding quasi-monodisperse (i.e., polydispersity approaching 1; very narrow size distributions) polysaccharides in the range of ~7 kDa to ~2 MDa ( = ~17 to 5000). In either strategy, acceptors containing non-carbohydrate functionalities (e.g., biotin, fluorophores, amines) can add useful moieties to the reducing termini of HA chains at 100% efficiency. As a further structural diversification, PmHAS can utilize a variety of unnatural UDP-sugar analogs thus adding novel groups (e.g., trifluoroacetyl, alkyne, azide, sulfhydryl) along the HA backbone and/or at its nonreducing terminus. This review discusses the current understanding and recent advances in HA chemoenzymatic synthesis methods using PmHAS. This powerful toolbox has potential for creation of a multitude of HA-based probes, therapeutics, drug conjugates, coatings, and biomaterials.
透明质酸(HA;[-3-GlcNAc-1-β-4-GlcA-1-β] )是脊椎动物的一种重要基质多糖,也是某些病原体的分子伪装涂层,由“HA合酶”(HAS)酶聚合而成。已鉴定出具有生物技术应用价值的三类HAS,但只有来自A型的II类PmHAS可用于体外制备非常明确的HA聚合物。有两种产生不同大小产物的通用化学酶策略:(1)通过将单个单糖从供体UDP-糖顺序添加到由短糖胺聚糖链(例如,HA二糖、三糖或四糖)或人工葡糖醛酸苷组成的受体(或“引物”)上进行重复的逐步延伸反应,生成2至约20个单糖单元(= 1至约10)范围内的均匀寡糖,或(2)采用受体介导的同步化学计量尺寸控制的“一锅法”聚合反应,生成约7 kDa至约2 MDa(=约17至5000)范围内的准单分散(即多分散性接近1;非常窄的尺寸分布)多糖。在任何一种策略中,含有非碳水化合物官能团(例如,生物素、荧光团、胺)的受体都可以100% 有效地将有用的部分添加到HA链的还原末端。作为进一步的结构多样化,PmHAS可以利用多种非天然UDP-糖类似物,从而沿着HA主链和/或其非还原末端添加新的基团(例如,三氟乙酰基、炔基、叠氮化物、巯基)。本综述讨论了使用PmHAS进行HA化学酶合成方法的当前认识和最新进展。这个强大的工具包有潜力创造多种基于HA的探针、治疗剂、药物偶联物、涂层和生物材料。