Tao Kai, Xue Bin, Li Qi, Hu Wen, Shimon Linda J W, Makam Pandeeswar, Si Mingsu, Yan Xuehai, Zhang Mingjun, Cao Yi, Yang Rusen, Li Junbai, Gazit Ehud
Department of Molecular Microbiology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel.
Collaborative Innovation Centre of Advanced Microstructures, National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, 22 Hankou Road, Nanjing 210093, Jiangsu, China.
Mater Today (Kidlington). 2019 May 29;30:10-16. doi: 10.1016/j.mattod.2019.04.002. Epub 2019 Apr 22.
Low biocompatibility or engineerability of conventional inorganic materials limits their extensive application for power harvesting in biological systems or at bio-machine interfaces. In contrast, intrinsically biocompatible peptide self-assemblies have shown promising potential as a new type of ideal components for eco-friendly optoelectronic energy-harvesting devices. However, the structural instability, weak mechanical strength, and inefficient optical or electrical properties severely impede their extensive application. Here, we demonstrate tryptophan-based aromatic dipeptide supramolecular structures to be direct wide-gap semiconductors. The molecular packings can be effectively modulated by changing the peptide sequence. The extensive and directional hydrogen bonding and aromatic interactions endow the structures with unique rigidity and thermal stability, as well as a wide-spectrum photoluminescence covering nearly the entire visible region, optical waveguiding, temperature/irradiation-dependent conductivity, and the ability to sustain quite high external electric fields. Furthermore, the assemblies display high piezoelectric properties, with a measured open-circuit voltage of up to 1.4 V. Our work provides insights into using aromatic short peptide self-assemblies for the fabrication of biocompatible, miniaturized electronics for power generation with tailored semiconducting optoelectronic properties and improved structural stability.
传统无机材料的生物相容性或可加工性较低,限制了它们在生物系统或生物机器界面中用于能量收集的广泛应用。相比之下,具有内在生物相容性的肽自组装体作为一种新型的理想组件,在环保型光电能量收集装置中显示出了巨大的潜力。然而,其结构不稳定性、较弱的机械强度以及低效的光学或电学性能严重阻碍了它们的广泛应用。在此,我们证明基于色氨酸的芳香二肽超分子结构是直接宽带隙半导体。通过改变肽序列可以有效地调节分子堆积。广泛且定向的氢键和芳香相互作用赋予了这些结构独特的刚性和热稳定性,以及覆盖几乎整个可见光区域的广谱光致发光、光波导、温度/辐射依赖性导电性,以及承受相当高外部电场的能力。此外,这些组装体显示出高压电性能,测量到的开路电压高达1.4V。我们的工作为利用芳香短肽自组装体制造具有定制半导体光电性能和改进结构稳定性的生物相容性微型发电电子器件提供了思路。