Oncology Translational Medicine, Bristol-Myers Squibb, Lawrenceville, New Jersey, USA.
Information and Data Management, Bristol-Myers Squibb, New Brunswick, New Jersey, USA.
Clin Pharmacol Ther. 2020 Apr;107(4):978-987. doi: 10.1002/cpt.1724. Epub 2019 Dec 19.
Lower clearance of immune checkpoint inhibitors is a predictor of improved overall survival (OS) in patients with advanced cancer. We investigated a novel approach using machine learning to identify a baseline composite cytokine signature via clearance, which, in turn, could be associated with OS in advanced melanoma. Peripheral nivolumab clearance and cytokine data from patients treated with nivolumab in two phase III studies (n = 468 (pooled)) and another phase III study (n = 158) were used for machine-learning model development and validation, respectively. Random forest (Boruta) algorithm was used for feature selection and classification of nivolumab clearance. The 16 top-ranking baseline inflammatory cytokines reflecting immune-cell modulation were selected as a composite signature to predict nivolumab clearance (area under the curve (AUC) = 0.75; accuracy = 0.7). Predicted clearance (high vs. low) via the cytokine signature was significantly associated with OS across all three studies (P < 0.01), regardless of treatment (nivolumab vs. chemotherapy).
免疫检查点抑制剂清除率较低是晚期癌症患者总生存期(OS)改善的预测指标。我们研究了一种使用机器学习的新方法,通过清除率来识别基线复合细胞因子特征,进而与晚期黑色素瘤的 OS 相关。使用来自两项 III 期研究(n=468(汇总))和另一项 III 期研究(n=158)中接受纳武利尤单抗治疗的患者的外周纳武利尤单抗清除率和细胞因子数据,分别用于机器学习模型的开发和验证。随机森林(Boruta)算法用于纳武利尤单抗清除率的特征选择和分类。选择 16 个排名最高的基线炎症细胞因子作为复合标志物,以预测纳武利尤单抗清除率(曲线下面积(AUC)=0.75;准确性=0.7)。通过细胞因子特征预测的清除率(高 vs. 低)在所有三项研究中均与 OS 显著相关(P<0.01),无论治疗(纳武利尤单抗 vs. 化疗)如何。
Cancer Immunol Res. 2017-12-5
CPT Pharmacometrics Syst Pharmacol. 2022-8
Clin Cancer Res. 2024-3-1
Cancer Chemother Pharmacol. 2023-9
J Pharmacokinet Pharmacodyn. 2023-6