文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

基于人群的研究:利用电子病历预测银屑病关节炎风险的机器学习方法。

Machine Learning Approaches for Predicting Psoriatic Arthritis Risk Using Electronic Medical Records: Population-Based Study.

机构信息

Graduate Institute of Biomedical Informatics, Taipei Medical University, Taipei, Taiwan.

Graduate Institute of Clinical Medicine, Taipei Medical University, Taipei, Taiwan.

出版信息

J Med Internet Res. 2023 Mar 28;25:e39972. doi: 10.2196/39972.


DOI:10.2196/39972
PMID:36976633
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10055385/
Abstract

BACKGROUND: Psoriasis (PsO) is a chronic, systemic, immune-mediated disease with multiorgan involvement. Psoriatic arthritis (PsA) is an inflammatory arthritis that is present in 6%-42% of patients with PsO. Approximately 15% of patients with PsO have undiagnosed PsA. Predicting patients with a risk of PsA is crucial for providing them with early examination and treatment that can prevent irreversible disease progression and function loss. OBJECTIVE: The aim of this study was to develop and validate a prediction model for PsA based on chronological large-scale and multidimensional electronic medical records using a machine learning algorithm. METHODS: This case-control study used Taiwan's National Health Insurance Research Database from January 1, 1999, to December 31, 2013. The original data set was split into training and holdout data sets in an 80:20 ratio. A convolutional neural network was used to develop a prediction model. This model used 2.5-year diagnostic and medical records (inpatient and outpatient) with temporal-sequential information to predict the risk of PsA for a given patient within the next 6 months. The model was developed and cross-validated using the training data and was tested using the holdout data. An occlusion sensitivity analysis was performed to identify the important features of the model. RESULTS: The prediction model included a total of 443 patients with PsA with earlier diagnosis of PsO and 1772 patients with PsO without PsA for the control group. The 6-month PsA risk prediction model that uses sequential diagnostic and drug prescription information as a temporal phenomic map yielded an area under the receiver operating characteristic curve of 0.70 (95% CI 0.559-0.833), a mean sensitivity of 0.80 (SD 0.11), a mean specificity of 0.60 (SD 0.04), and a mean negative predictive value of 0.93 (SD 0.04). CONCLUSIONS: The findings of this study suggest that the risk prediction model can identify patients with PsO at a high risk of PsA. This model may help health care professionals to prioritize treatment for target high-risk populations and prevent irreversible disease progression and functional loss.

摘要

背景:银屑病(PsO)是一种慢性、全身性、免疫介导的疾病,多器官受累。银屑病关节炎(PsA)是一种炎症性关节炎,存在于 6%-42%的银屑病患者中。大约 15%的银屑病患者未被诊断为 PsA。预测患有 PsA 风险的患者对于为他们提供早期检查和治疗至关重要,这可以防止不可逆的疾病进展和功能丧失。 目的:本研究旨在使用机器学习算法,基于时间顺序的大规模多维电子病历,开发和验证一种针对 PsA 的预测模型。 方法:本病例对照研究使用了台湾的全民健康保险研究数据库,时间范围为 1999 年 1 月 1 日至 2013 年 12 月 31 日。原始数据集按照 80:20 的比例分为训练集和验证集。使用卷积神经网络开发预测模型。该模型使用具有时间顺序信息的 2.5 年诊断和病历(住院和门诊)来预测给定患者在接下来 6 个月内患 PsA 的风险。使用训练数据开发和交叉验证模型,并使用验证数据进行测试。进行遮挡敏感性分析以确定模型的重要特征。 结果:预测模型共纳入 443 例早期诊断为 PsO 且有 PsA 的患者和 1772 例无 PsA 的 PsO 患者作为对照组。使用序列诊断和药物处方信息作为时间表型图谱的 6 个月 PsA 风险预测模型,其接收者操作特征曲线下面积为 0.70(95%CI 0.559-0.833),平均敏感度为 0.80(SD 0.11),平均特异性为 0.60(SD 0.04),平均阴性预测值为 0.93(SD 0.04)。 结论:本研究结果表明,该风险预测模型可识别出患有银屑病且患银屑病关节炎风险较高的患者。该模型可帮助医疗保健专业人员为高危人群提供优先治疗,防止不可逆的疾病进展和功能丧失。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/17a2/10055385/be6760e4d0a7/jmir_v25i1e39972_fig2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/17a2/10055385/80dbcc168217/jmir_v25i1e39972_fig1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/17a2/10055385/be6760e4d0a7/jmir_v25i1e39972_fig2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/17a2/10055385/80dbcc168217/jmir_v25i1e39972_fig1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/17a2/10055385/be6760e4d0a7/jmir_v25i1e39972_fig2.jpg

相似文献

[1]
Machine Learning Approaches for Predicting Psoriatic Arthritis Risk Using Electronic Medical Records: Population-Based Study.

J Med Internet Res. 2023-3-28

[2]
Clinical Burden of Concomitant Joint Disease in Psoriasis: A US-Linked Claims and Electronic Health Records Database Analysis.

Adv Ther. 2021-5

[3]
Blood-Based Immune Profiling Combined with Machine Learning Discriminates Psoriatic Arthritis from Psoriasis Patients.

Int J Mol Sci. 2021-10-12

[4]
Incidence and prevalence of psoriatic arthritis in patients with psoriasis stratified by psoriasis disease severity: Retrospective analysis of an electronic health records database in the United States.

J Am Acad Dermatol. 2022-4

[5]
Prevalence of Musculoskeletal Symptoms in Patients with Psoriasis and Predictors Associated with the Development of Psoriatic Arthritis: Retrospective Analysis of a US Claims Database.

Dermatol Ther (Heidelb). 2023-11

[6]
Prospective cohort study of psoriatic arthritis risk in patients with psoriasis in a real-world psoriasis registry.

J Am Acad Dermatol. 2022-12

[7]
Evaluation of a machine learning tool for the early identification of patients with undiagnosed psoriatic arthritis - A retrospective population-based study.

J Transl Autoimmun. 2023-8-2

[8]
Rationale and Design of the Brigham Cohort for psoriasis and psoriatic arthritis registry (COPPAR).

BMC Dermatol. 2017-8-16

[9]
Psoriasis Characteristics for the Early Detection of Psoriatic Arthritis.

J Rheumatol. 2021-10

[10]
Variables associated with joint involvement and development of a prediction rule for arthritis in patients with psoriasis. An analysis of the Italian PsoReal database.

J Am Acad Dermatol. 2023-7

引用本文的文献

[1]
Diagnostic accuracy of machine learning approaches to identify psoriatic arthritis: a meta-analysis.

Clin Exp Med. 2025-8-9

[2]
Current application, possibilities, and challenges of artificial intelligence in the management of rheumatoid arthritis, axial spondyloarthritis, and psoriatic arthritis.

Ther Adv Musculoskelet Dis. 2025-6-21

[3]
Combining Clinical, Genetic and Protein Markers Using Machine Learning Models Discriminates Psoriatic Arthritis Patients From Those With Psoriasis.

J Psoriasis Psoriatic Arthritis. 2025-5-19

[4]
The Role of Artificial Intelligence in the Diagnosis and Management of Rheumatoid Arthritis.

Medicina (Kaunas). 2025-4-9

[5]
AI for imaging evaluation in rheumatology: applications of radiomics and computer vision-current status, future prospects and potential challenges.

Rheumatol Adv Pract. 2025-4-18

[6]
Enhancing Patient Outcome Prediction Through Deep Learning With Sequential Diagnosis Codes From Structured Electronic Health Record Data: Systematic Review.

J Med Internet Res. 2025-3-18

[7]
Clinical, genetic and omics-based biomarkers that might support the identification of the development of psoriatic arthritis in individuals with psoriasis: a narrative review of the literature.

RMD Open. 2024-12-12

[8]
Using Automated Machine Learning to Predict Necessary Upcoming Therapy Changes in Patients With Psoriasis Vulgaris and Psoriatic Arthritis and Uncover New Influences on Disease Progression: Retrospective Study.

JMIR Form Res. 2024-6-27

[9]
Principles, applications, and future of artificial intelligence in dermatology.

Front Med (Lausanne). 2023-10-12

本文引用的文献

[1]
Machine Learning in Dermatology: Current Applications, Opportunities, and Limitations.

Dermatol Ther (Heidelb). 2020-6

[2]
A Machine-Learning Approach to Identify a Prognostic Cytokine Signature That Is Associated With Nivolumab Clearance in Patients With Advanced Melanoma.

Clin Pharmacol Ther. 2019-12-19

[3]
Application of machine learning to determine top predictors of noncalcified coronary burden in psoriasis: An observational cohort study.

J Am Acad Dermatol. 2020-12

[4]
Systematic review of machine learning for diagnosis and prognosis in dermatology.

J Dermatolog Treat. 2020-8

[5]
Assessment of Deep Learning Using Nonimaging Information and Sequential Medical Records to Develop a Prediction Model for Nonmelanoma Skin Cancer.

JAMA Dermatol. 2019-11-1

[6]
Taiwan's National Health Insurance Research Database: past and future.

Clin Epidemiol. 2019-5-3

[7]
Machine Learning in Medicine.

N Engl J Med. 2019-4-4

[8]
Genetic signature to provide robust risk assessment of psoriatic arthritis development in psoriasis patients.

Nat Commun. 2018-10-9

[9]
The Importance of Early Treatment in Psoriasis and Management of Disease Progression.

J Drugs Dermatol. 2018-7-1

[10]
Deep learning with convolutional neural network in radiology.

Jpn J Radiol. 2018-4

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索