Suppr超能文献

SHAP 值在推断药代动力学建模中协变量最优函数形式中的应用。

Application of SHAP values for inferring the optimal functional form of covariates in pharmacokinetic modeling.

机构信息

Department of Clinical Pharmacology, Hospital Pharmacy, Amsterdam University Medical Center, Amsterdam, The Netherlands.

Quantitative Data Analytics Group, Department of Computer Science, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.

出版信息

CPT Pharmacometrics Syst Pharmacol. 2022 Aug;11(8):1100-1110. doi: 10.1002/psp4.12828. Epub 2022 Jun 24.

Abstract

In population pharmacokinetic (PK) models, interindividual variability is explained by implementation of covariates in the model. The widely used forward stepwise selection method is sensitive to bias, which may lead to an incorrect inclusion of covariates. Alternatives, such as the full fixed effects model, reduce this bias but are dependent on the chosen implementation of each covariate. As the correct functional forms are unknown, this may still lead to an inaccurate selection of covariates. Machine learning (ML) techniques can potentially be used to learn the optimal functional forms for implementing covariates directly from data. A recent study suggested that using ML resulted in an improved selection of influential covariates. However, how do we select the appropriate functional form for including these covariates? In this work, we use SHapley Additive exPlanations (SHAP) to infer the relationship between covariates and PK parameters from ML models. As a case-study, we use data from 119 patients with hemophilia A receiving clotting factor VIII concentrate peri-operatively. We fit both a random forest and a XGBoost model to predict empirical Bayes estimated clearance and central volume from a base nonlinear mixed effects model. Next, we show that SHAP reveals covariate relationships which match previous findings. In addition, we can reveal subtle effects arising from combinations of covariates difficult to obtain using other methods of covariate analysis. We conclude that the proposed method can be used to extend ML-based covariate selection, and holds potential as a complete full model alternative to classical covariate analyses.

摘要

在群体药代动力学(PK)模型中,通过在模型中实施协变量来解释个体间的变异性。广泛使用的逐步正向选择方法容易产生偏差,这可能导致不正确地包含协变量。替代方法,如完全固定效应模型,可以减少这种偏差,但依赖于每个协变量的选择实现。由于正确的函数形式未知,这仍然可能导致协变量的选择不准确。机器学习(ML)技术可以从数据中直接学习实施协变量的最佳函数形式。最近的一项研究表明,使用 ML 可以改进有影响力的协变量的选择。但是,我们如何选择包含这些协变量的适当函数形式呢?在这项工作中,我们使用 SHapley Additive exPlanations (SHAP) 从 ML 模型中推断协变量与 PK 参数之间的关系。作为一个案例研究,我们使用了 119 名接受凝血因子 VIII 浓缩物围手术期治疗的血友病 A 患者的数据。我们拟合了随机森林和 XGBoost 模型,以从基本非线性混合效应模型预测经验贝叶斯估计清除率和中心体积。接下来,我们表明 SHAP 揭示了与先前发现相匹配的协变量关系。此外,我们可以揭示难以使用其他协变量分析方法获得的协变量组合产生的微妙影响。我们得出结论,所提出的方法可以用于扩展基于 ML 的协变量选择,并有可能作为经典协变量分析的完整全模型替代方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/047a/9381890/6918e7b885a6/PSP4-11-1100-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验