Suppr超能文献

MEMC-Net:用于视频插值与增强的运动估计和运动补偿驱动神经网络。

MEMC-Net: Motion Estimation and Motion Compensation Driven Neural Network for Video Interpolation and Enhancement.

作者信息

Bao Wenbo, Lai Wei-Sheng, Zhang Xiaoyun, Gao Zhiyong, Yang Ming-Hsuan

出版信息

IEEE Trans Pattern Anal Mach Intell. 2021 Mar;43(3):933-948. doi: 10.1109/TPAMI.2019.2941941. Epub 2021 Feb 4.

Abstract

Motion estimation (ME) and motion compensation (MC) have been widely used for classical video frame interpolation systems over the past decades. Recently, a number of data-driven frame interpolation methods based on convolutional neural networks have been proposed. However, existing learning based methods typically estimate either flow or compensation kernels, thereby limiting performance on both computational efficiency and interpolation accuracy. In this work, we propose a motion estimation and compensation driven neural network for video frame interpolation. A novel adaptive warping layer is developed to integrate both optical flow and interpolation kernels to synthesize target frame pixels. This layer is fully differentiable such that both the flow and kernel estimation networks can be optimized jointly. The proposed model benefits from the advantages of motion estimation and compensation methods without using hand-crafted features. Compared to existing methods, our approach is computationally efficient and able to generate more visually appealing results. Furthermore, the proposed MEMC-Net architecture can be seamlessly adapted to several video enhancement tasks, e.g., super-resolution, denoising, and deblocking. Extensive quantitative and qualitative evaluations demonstrate that the proposed method performs favorably against the state-of-the-art video frame interpolation and enhancement algorithms on a wide range of datasets.

摘要

在过去几十年中,运动估计(ME)和运动补偿(MC)已广泛应用于传统视频帧插值系统。最近,已经提出了许多基于卷积神经网络的数据驱动帧插值方法。然而,现有的基于学习的方法通常要么估计光流,要么估计补偿内核,从而限制了计算效率和插值精度方面的性能。在这项工作中,我们提出了一种用于视频帧插值的运动估计和补偿驱动神经网络。开发了一种新颖的自适应扭曲层,以集成光流和插值内核来合成目标帧像素。该层是完全可微的,因此光流和内核估计网络都可以联合优化。所提出的模型受益于运动估计和补偿方法的优点,而无需使用手工制作的特征。与现有方法相比,我们的方法计算效率高,能够生成更具视觉吸引力的结果。此外,所提出的MEMC-Net架构可以无缝地适用于多种视频增强任务,例如超分辨率、去噪和去块。广泛的定量和定性评估表明,所提出的方法在广泛的数据集上优于当前最先进的视频帧插值和增强算法。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验