Suppr超能文献

学习用于视频超分辨率的深度双注意力网络。

Learning a Deep Dual Attention Network for Video Super-Resolution.

作者信息

Li Feng, Bai Huihui, Zhao Yao

出版信息

IEEE Trans Image Process. 2020 Feb 12. doi: 10.1109/TIP.2020.2972118.

Abstract

Recently, deep learning based video super-resolution (SR) methods combine the convolutional neural networks (CNN) with motion compensation to estimate a high-resolution (HR) video from its low-resolution (LR) counterpart. However, most previous methods conduct downscaling motion estimation to handle large motions, which can lead to detrimental effects on the accuracy of motion estimation due to the reduction of spatial resolution. Besides, these methods usually treat different types of intermediate features equally, which lack flexibility to emphasize meaningful information for revealing the high-frequency details. In this paper, to solve above issues, we propose a deep dual attention network (DDAN), including a motion compensation network (MCNet) and a SR reconstruction network (ReconNet), to fully exploit the spatio-temporal informative features for accurate video SR. The MCNet progressively learns the optical flow representations to synthesize the motion information across adjacent frames in a pyramid fashion. To decrease the mis-registration errors caused by the optical flow based motion compensation, we extract the detail components of original LR neighboring frames as complementary information for accurate feature extraction. In the ReconNet, we implement dual attention mechanisms on a residual unit and form a residual attention unit to focus on the intermediate informative features for high-frequency details recovery. Extensive experimental results on numerous datasets demonstrate the proposed method can effectively achieve superior performance in terms of quantitative and qualitative assessments compared with state-of-the-art methods.

摘要

最近,基于深度学习的视频超分辨率(SR)方法将卷积神经网络(CNN)与运动补偿相结合,以从低分辨率(LR)视频中估计出高分辨率(HR)视频。然而,大多数先前的方法进行下采样运动估计来处理大运动,由于空间分辨率的降低,这可能会对运动估计的准确性产生不利影响。此外,这些方法通常平等对待不同类型的中间特征,缺乏强调有意义信息以揭示高频细节的灵活性。在本文中,为了解决上述问题,我们提出了一种深度双注意力网络(DDAN),包括一个运动补偿网络(MCNet)和一个SR重建网络(ReconNet),以充分利用时空信息特征来实现准确的视频超分辨率。MCNet逐步学习光流表示,以金字塔方式合成相邻帧之间的运动信息。为了减少基于光流的运动补偿引起的配准误差,我们提取原始LR相邻帧的细节分量作为补充信息,用于准确的特征提取。在ReconNet中,我们在残差单元上实现双注意力机制,并形成一个残差注意力单元,以关注中间信息特征以恢复高频细节。在众多数据集上的大量实验结果表明,与现有方法相比,所提出的方法在定量和定性评估方面都能有效地实现卓越的性能。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验