Suppr超能文献

基于心率变异性的睡眠呼吸暂停/正常呼吸判别模型进行阻塞性睡眠呼吸暂停筛查。

Obstructive sleep apnea screening by heart rate variability-based apnea/normal respiration discriminant model.

机构信息

Department of Systems Science, Kyoto University, Kyoto, Japan.

出版信息

Physiol Meas. 2019 Dec 20;40(12):125001. doi: 10.1088/1361-6579/ab57be.

Abstract

OBJECTIVE

Obstructive sleep apnea (OSA) is a common sleep disorder; however, most patients are undiagnosed and untreated because it is difficult for patients themselves to notice OSA in daily living. Polysomnography (PSG), which is the gold standard test for sleep disorder diagnosis, cannot be performed in many hospitals. This fact motivates us to develop a simple system for screening OSA at home.

APPROACH

The autonomic nervous system changes during apnea, and such changes affect heart rate variability (HRV). This work develops a new apnea screening method based on HRV analysis and machine learning technologies. An apnea/normal respiration (A/N) discriminant model is built for respiration condition estimation for every heart rate measurement, and an apnea/sleep ratio is introduced for final diagnosis. A random forest is adopted for the A/N discriminant model construction, which is trained with the PhysioNet apnea-ECG database.

MAIN RESULTS

The screening performance of the proposed method was evaluated by applying it to clinical PSG data. Sensitivity and specificity achieved 76% and 92%, respectively, which are comparable to existing portable sleep monitoring devices used in sleep laboratories.

SIGNIFICANCE

Since the proposed OSA screening method can be used more easily than existing devices, it will contribute to OSA treatment.

摘要

目的

阻塞性睡眠呼吸暂停(OSA)是一种常见的睡眠障碍;然而,由于患者自身很难在日常生活中注意到 OSA,大多数患者未被诊断和治疗。多导睡眠图(PSG)是睡眠障碍诊断的金标准测试,但许多医院无法进行。这一事实促使我们开发一种简单的家庭 OSA 筛查系统。

方法

呼吸暂停期间自主神经系统会发生变化,这种变化会影响心率变异性(HRV)。这项工作基于 HRV 分析和机器学习技术开发了一种新的呼吸暂停筛查方法。为了估计每个心率测量的呼吸状态,建立了一个呼吸暂停/正常呼吸(A/N)判别模型,并引入了呼吸暂停/睡眠比进行最终诊断。采用随机森林进行 A/N 判别模型构建,在 PhysioNet 呼吸暂停-ECG 数据库中进行训练。

主要结果

通过将该方法应用于临床 PSG 数据,评估了所提出的筛查方法的性能。敏感性和特异性分别达到 76%和 92%,与睡眠实验室中使用的现有便携式睡眠监测设备相当。

意义

由于所提出的 OSA 筛查方法比现有设备更容易使用,因此它将有助于 OSA 的治疗。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验