Suppr超能文献

基于人体生理信号的人工智能驱动的睡眠呼吸暂停/低通气自动检测方法综述

AI-driven approaches for automatic detection of sleep apnea/hypopnea based on human physiological signals: a review.

作者信息

Peng Dandan, Sun Le, Zhou Qian, Zhang Yanchun

机构信息

The Cyberspace Institute of Advanced Technology, Guangzhou University, Guangzhou, 510006 China.

The Department of Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology (CICAEET), Nanjing University of Information Science and Technology, Nanjing, 210044 China.

出版信息

Health Inf Sci Syst. 2024 Dec 20;13(1):7. doi: 10.1007/s13755-024-00320-8. eCollection 2025 Dec.

Abstract

Sleep apnea/hypopnea is a sleep disorder characterized by repeated pauses in breathing which could induce a series of health problems such as cardiovascular disease (CVD) and even sudden death. Polysomnography (PSG) is the most common way to diagnose sleep apnea/hypopnea. Considering that PSG data acquisition is complex and the diagnosis of sleep apnea/hypopnea requires manual scoring, it is very time-consuming and highly professional. With the development of wearable devices and AI techniques, more and more works have been focused on building machine and deep learning models that use single or multi-modal physiological signals to achieve automated detection of sleep apnea/hypopnea. This paper provides a comprehensive review of automatic sleep apnea/hypopnea detection methods based on AI-based techniques in recent years. We summarize the general process used by existing works with a flow chart, which mainly includes data acquisition, raw signal pre-processing, model construction, event classification, and evaluation, since few papers consider these. Additionally, the commonly used public database and pre-processing methods are also reviewed in this paper. After that, we separately summarize the existing methods related to different modal physiological signals including nasal airflow, pulse oxygen saturation (SpO), electrocardiogram (ECG), electroencephalogram (EEG) and snoring sound. Furthermore, specific signal pre-processing methods based on the characteristics of different physiological signals are also covered. Finally, challenges need to be addressed, such as limited data availability, imbalanced data problem, multi-center study necessity etc., and future research directions related to AI are discussed.

摘要

睡眠呼吸暂停/低通气是一种睡眠障碍,其特征是呼吸反复暂停,这可能会引发一系列健康问题,如心血管疾病(CVD)甚至猝死。多导睡眠图(PSG)是诊断睡眠呼吸暂停/低通气最常用的方法。鉴于PSG数据采集复杂,且睡眠呼吸暂停/低通气的诊断需要人工评分,这非常耗时且专业性很强。随着可穿戴设备和人工智能技术的发展,越来越多的工作聚焦于构建使用单模态或多模态生理信号的机器学习和深度学习模型,以实现睡眠呼吸暂停/低通气的自动检测。本文对近年来基于人工智能技术的睡眠呼吸暂停/低通气自动检测方法进行了全面综述。我们用流程图总结了现有工作使用的一般过程,主要包括数据采集、原始信号预处理、模型构建、事件分类和评估,因为很少有论文考虑这些。此外,本文还综述了常用的公共数据库和预处理方法。之后,我们分别总结了与不同模态生理信号相关的现有方法,包括鼻气流、脉搏血氧饱和度(SpO)、心电图(ECG)、脑电图(EEG)和鼾声。此外,还涵盖了基于不同生理信号特征的特定信号预处理方法。最后,讨论了需要解决的挑战,如数据可用性有限、数据不平衡问题、多中心研究的必要性等,以及与人工智能相关的未来研究方向。

相似文献

本文引用的文献

4
Deep-Learning based Sleep Apnea Detection using SpO2 and Pulse Rate.基于深度学习的血氧饱和度和脉搏率睡眠呼吸暂停检测。
Annu Int Conf IEEE Eng Med Biol Soc. 2022 Jul;2022:2611-2614. doi: 10.1109/EMBC48229.2022.9871295.
9
Deep Learning Forecasts the Occurrence of Sleep Apnea from Single-Lead ECG.深度学习从单导联心电图预测睡眠呼吸暂停的发生。
Cardiovasc Eng Technol. 2022 Dec;13(6):809-815. doi: 10.1007/s13239-022-00615-5. Epub 2022 Mar 17.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验