Suppr超能文献

一种基于机器的方法,用于术前识别与肝内胆管癌切除相关获益最多和获益最少的患者:来自 1146 例患者的国际多机构分析。

A Machine-Based Approach to Preoperatively Identify Patients with the Most and Least Benefit Associated with Resection for Intrahepatic Cholangiocarcinoma: An International Multi-institutional Analysis of 1146 Patients.

机构信息

Division of Surgical Oncology, Department of Surgery, Wexner Medical Center and James Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA.

Department of Surgery, University of Verona, Verona, Italy.

出版信息

Ann Surg Oncol. 2020 Apr;27(4):1110-1119. doi: 10.1245/s10434-019-08067-3. Epub 2019 Nov 14.

Abstract

BACKGROUND

Accurate risk stratification and patient selection is necessary to identify patients who will benefit the most from surgery or be better treated with other non-surgical treatment strategies. We sought to identify which patients in the preoperative setting would likely derive the most or least benefit from resection of intrahepatic cholangiocarcinoma (ICC).

METHODS

Patients who underwent curative-intent resection for ICC between 1990 and 2017 were identified from an international multi-institutional database. A machine-based classification and regression tree (CART) was used to generate homogeneous groups of patients relative to overall survival (OS) based on preoperative factors.

RESULTS

Among 1146 patients, CART analysis revealed tumor number and size, albumin-bilirubin (ALBI) grade and preoperative lymph node (LN) status as the strongest prognostic factors associated with OS among patients undergoing resection for ICC. In turn, four groups of patients with distinct outcomes were generated through machine learning: Group 1 (n = 228): single ICC, size ≤ 5 cm, ALBI grade I, negative preoperative LN status; Group 2 (n = 708): (1) single tumor > 5 cm, (2) single tumor ≤ 5 cm, ALBI grade 2/3, and (3) single tumor ≤ 5 cm, ALBI grade 1, metastatic/suspicious LNs; Group 3 (n = 150): 2-3 tumors; Group 4 (n = 60): ≥ 4 tumors. 5-year OS among Group 1, 2, 3, and 4 patients was 60.5%, 35.8%, 27.5%, and 3.8%, respectively (p < 0.001). Similarly, 5-year disease-free survival (DFS) among Group 1, 2, 3, and 4 patients was 47%, 27.2%, 6.8%, and 0%, respectively (p < 0.001).

CONCLUSIONS

The machine-based CART model identified distinct prognostic groups of patients with distinct outcomes based on preoperative factors. Survival decision trees may be useful as guides in preoperative patient selection and risk stratification.

摘要

背景

准确的风险分层和患者选择对于识别最有可能从手术中获益或通过其他非手术治疗策略获得更好治疗效果的患者至关重要。我们旨在确定术前哪些患者最有可能从肝内胆管癌(ICC)切除术获益,或最不可能获益。

方法

从一个国际多机构数据库中确定了 1990 年至 2017 年间接受根治性切除术治疗 ICC 的患者。基于术前因素,使用基于机器的分类回归树(CART)分析生成与总体生存(OS)相关的同质患者组。

结果

在 1146 名患者中,CART 分析显示肿瘤数量和大小、白蛋白-胆红素(ALBI)分级和术前淋巴结(LN)状态是与 ICC 切除术后 OS 相关的最强预后因素。反过来,通过机器学习生成了具有不同结局的四组患者:第 1 组(n=228):单个 ICC,大小≤5cm,ALBI 分级 I,术前 LN 状态阴性;第 2 组(n=708):(1)单个肿瘤>5cm,(2)单个肿瘤≤5cm,ALBI 分级 2/3,和(3)单个肿瘤≤5cm,ALBI 分级 1,转移性/可疑 LN;第 3 组(n=150):2-3 个肿瘤;第 4 组(n=60):≥4 个肿瘤。第 1、2、3 和 4 组患者的 5 年 OS 分别为 60.5%、35.8%、27.5%和 3.8%(p<0.001)。同样,第 1、2、3 和 4 组患者的 5 年无病生存(DFS)分别为 47%、27.2%、6.8%和 0%(p<0.001)。

结论

基于术前因素,基于机器的 CART 模型确定了具有不同结局的不同预后患者组。生存决策树可用作术前患者选择和风险分层的指南。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验