Laboratory of Organic Nanomaterials and Biomolecules, Faculty of Chemistry, University of Warsaw, Pasteura 1 Street, 02-093, Warsaw, Poland.
BioNanoPlasmonic Laboratory, CIC biomaGUNE, Paseo de Miramón 182, Donostia-San Sebastián, 20014, Spain.
Adv Mater. 2020 Jan;32(1):e1904581. doi: 10.1002/adma.201904581. Epub 2019 Nov 15.
The availability of helical assemblies of plasmonic nanoparticles with precisely controlled and tunable structures can play a key role in the future development of chiral plasmonics and metamaterials. Here, a strategy to efficiently yield helical structures based on the cooperative interactions of liquid crystals and gold nanoparticles in thin films is developed. These nanocomposites exhibit exceptional long-range hierarchical order across length scales, which results from the growth mechanism of nanoparticle-coated twisted nanoribbons and their ability to form organized bundles. The helical assembly formation is governed by the presence of rationally functionalized nanoparticles. Importantly, the thickness of the achieved nanocomposites can be reversibly reconfigured owing to the polymorphic nature of the liquid crystal. The versatility of the proposed approach is demonstrated by preparing helices assembled from nanoparticles of different geometries and dimensions (spherical and rod-like). The described strategy may become an enabling technology for structuring nanoparticle assemblies with high precision and fabricating optically active materials.
螺旋状的等离子体纳米粒子组装体具有精确可控和可调的结构,这在未来手性等离子体学和超材料的发展中可能会起到关键作用。在这里,我们开发了一种策略,可通过在薄膜中液晶和金纳米粒子的协同相互作用来高效生成螺旋结构。这些纳米复合材料在跨尺度上表现出异常的长程分级有序性,这源于涂覆有纳米粒子的扭曲纳米带的生长机制及其形成有序束的能力。螺旋组装的形成受合理功能化纳米粒子的存在控制。重要的是,由于液晶的多晶型性质,所获得的纳米复合材料的厚度可以进行可逆重构。通过制备由不同形状和尺寸(球形和棒状)的纳米粒子组装而成的螺旋,证明了所提出方法的多功能性。该策略可能成为具有高精度构建纳米粒子组装体和制造光学活性材料的一项使能技术。