Jańczuk Zuzanna Z, Jedrych Agnieszka, Parzyszek Sylwia, Gardias Anita, Szczytko Jacek, Wojcik Michal
Faculty of Chemistry, University of Warsaw, 1 Pasteur Street, 02-093 Warsaw, Poland.
Faculty of Physics, University of Warsaw, 5 Pasteur Street, 02-093 Warsaw, Poland.
Nanomaterials (Basel). 2023 Nov 6;13(21):2908. doi: 10.3390/nano13212908.
The process of arranging magnetic nanoparticles (MNPs) into long-range structures that can be dynamically and reversibly controlled is challenging, although interesting for emerging spintronic applications. Here, we report composites of MNPs in excess of LC-like ligands as promising materials for MNP-based technologies. The organic part ensures the assembly of MNP into long-range ordered phases as well as precise and temperature-reversible control over the arrangement. The dynamic changes are fully reversible, which we confirm using X-ray diffraction (XRD). This methodology allows for the precise control of the nanomaterial's structure in a thin film at different temperatures, translating to variable unit cell parameters. The composition of the materials (XPS, TGA), their structure (XRD), and magnetic properties (SQUID) were performed. Overall, this study confirms that LC-like materials provide the ability to dynamically control the magnetic nanoparticles in thin films, particularly the reversible control of their self-organization.
将磁性纳米颗粒(MNP)排列成可动态且可逆控制的长程结构的过程具有挑战性,尽管对于新兴的自旋电子学应用来说很有趣。在此,我们报道了MNP与类液晶配体形成的复合材料,它们是基于MNP技术的有前景的材料。有机部分确保了MNP组装成长程有序相,并对排列进行精确且温度可逆的控制。动态变化是完全可逆的,我们通过X射线衍射(XRD)证实了这一点。这种方法允许在不同温度下精确控制薄膜中纳米材料的结构,转化为可变的晶胞参数。对材料的组成(X射线光电子能谱、热重分析)、结构(XRD)和磁性(超导量子干涉仪)进行了研究。总体而言,这项研究证实类液晶材料能够动态控制薄膜中的磁性纳米颗粒,特别是对其自组装的可逆控制。