Department of Clinical Genetics, Erasmus University Medical Center, PO Box 2040, 3000 CA Rotterdam, the Netherlands; Neurogenetics Research Group, Research Cluster Reproduction, Genetics and Regenerative Medicine, Vrije Universiteit Brussel, Brussels 1090, Belgium; Center for Medical Genetics, UZ Brussel, Brussels 1090, Belgium.
Department of Clinical Genetics, Erasmus University Medical Center, PO Box 2040, 3000 CA Rotterdam, the Netherlands.
Am J Hum Genet. 2019 Dec 5;105(6):1126-1147. doi: 10.1016/j.ajhg.2019.10.009. Epub 2019 Nov 14.
The redox state of the neural progenitors regulates physiological processes such as neuronal differentiation and dendritic and axonal growth. The relevance of endoplasmic reticulum (ER)-associated oxidoreductases in these processes is largely unexplored. We describe a severe neurological disorder caused by bi-allelic loss-of-function variants in thioredoxin (TRX)-related transmembrane-2 (TMX2); these variants were detected by exome sequencing in 14 affected individuals from ten unrelated families presenting with congenital microcephaly, cortical polymicrogyria, and other migration disorders. TMX2 encodes one of the five TMX proteins of the protein disulfide isomerase family, hitherto not linked to human developmental brain disease. Our mechanistic studies on protein function show that TMX2 localizes to the ER mitochondria-associated membranes (MAMs), is involved in posttranslational modification and protein folding, and undergoes physical interaction with the MAM-associated and ER folding chaperone calnexin and ER calcium pump SERCA2. These interactions are functionally relevant because TMX2-deficient fibroblasts show decreased mitochondrial respiratory reserve capacity and compensatory increased glycolytic activity. Intriguingly, under basal conditions TMX2 occurs in both reduced and oxidized monomeric form, while it forms a stable dimer under treatment with hydrogen peroxide, recently recognized as a signaling molecule in neural morphogenesis and axonal pathfinding. Exogenous expression of the pathogenic TMX2 variants or of variants with an in vitro mutagenized TRX domain induces a constitutive TMX2 polymerization, mimicking an increased oxidative state. Altogether these data uncover TMX2 as a sensor in the MAM-regulated redox signaling pathway and identify it as a key adaptive regulator of neuronal proliferation, migration, and organization in the developing brain.
神经祖细胞的氧化还原状态调节生理过程,如神经元分化和树突和轴突生长。内质网(ER)相关氧化还原酶在这些过程中的相关性在很大程度上尚未得到探索。我们描述了一种由硫氧还蛋白(TRX)相关跨膜-2(TMX2)的双等位基因功能丧失变异引起的严重神经疾病;这些变异是通过外显子组测序在 10 个无关家庭的 14 名受影响个体中检测到的,这些个体表现为先天性小头畸形、皮质多小脑回和其他迁移障碍。TMX2 编码蛋白质二硫键异构酶家族的五个 TMX 蛋白之一,迄今与人类发育性脑疾病无关。我们对蛋白质功能的机制研究表明,TMX2 定位于 ER 线粒体相关膜(MAMs),参与翻译后修饰和蛋白质折叠,并与 MAM 相关和 ER 折叠伴侣钙联蛋白和 ER 钙泵 SERCA2 发生物理相互作用。这些相互作用具有功能相关性,因为 TMX2 缺陷成纤维细胞显示线粒体呼吸储备能力降低和代偿性糖酵解活性增加。有趣的是,在基础条件下,TMX2 以还原和氧化的单体形式存在,而在过氧化氢处理下形成稳定的二聚体,过氧化氢最近被认为是神经形态发生和轴突寻路的信号分子。外源性表达致病性 TMX2 变体或具有体外突变 TRX 结构域的变体诱导 TMX2 聚合,模拟增加的氧化状态。总之,这些数据揭示了 TMX2 作为 MAM 调节的氧化还原信号通路中的传感器,并将其鉴定为发育中大脑中神经元增殖、迁移和组织的关键适应性调节剂。