Punacha Shreyas, Berg Sebastian, Sebastian Anupama, Krinski Valentin I, Luther Stefan, Shajahan T K
National Institute of Technology Karnataka, Surathkal, Mangalore 575025, India.
Max Planck Institute of Dynamics and Self Organization, Göttingen 37017, Germany.
Proc Math Phys Eng Sci. 2019 Oct;475(2230):20190420. doi: 10.1098/rspa.2019.0420. Epub 2019 Oct 16.
Rotating spiral waves of electrical activity in the heart can anchor to unexcitable tissue (an obstacle) and become stable pinned waves. A pinned rotating wave can be unpinned either by a local electrical stimulus applied close to the spiral core, or by an electric field pulse that excites the core of a pinned wave independently of its localization. The wave will be unpinned only when the pulse is delivered inside a narrow time interval called the unpinning window (UW) of the spiral. In experiments with cardiac monolayers, we found that other obstacles situated near the pinning centre of the spiral can facilitate unpinning. In numerical simulations, we found increasing or decreasing of the UW depending on the location, orientation and distance between the pinning centre and an obstacle. Our study indicates that multiple obstacles could contribute to unpinning in experiments with intact hearts.
心脏中电活动的旋转螺旋波可附着于不可兴奋组织(障碍物)并成为稳定的固定波。固定的旋转波可通过在螺旋波核心附近施加局部电刺激,或通过独立于其定位而激发固定波核心的电场脉冲来解除固定。只有当脉冲在称为螺旋波解锁窗口(UW)的狭窄时间间隔内施加时,波才会被解锁。在心脏单层实验中,我们发现位于螺旋波固定中心附近的其他障碍物可促进解锁。在数值模拟中,我们发现解锁窗口会根据固定中心与障碍物之间的位置、方向和距离而增大或减小。我们的研究表明,在完整心脏实验中,多个障碍物可能有助于解锁。