Suppr超能文献

一种用于识别亚临床圆锥角膜病例的联合生物力学和断层扫描模型。

A Combined Biomechanical and Tomographic Model for Identifying Cases of Subclinical Keratoconus.

机构信息

Department of Ophthalmology, Eskişehir Osmangazi University Medical School, Eskişehir, Turkey; and.

Department of Biostatistics, Eskişehir Osmangazi University Medical School, Eskişehir, Turkey.

出版信息

Cornea. 2020 Apr;39(4):461-467. doi: 10.1097/ICO.0000000000002205.

Abstract

PURPOSE

To develop a combined biomechanical and tomographic model for identifying eyes with subclinical keratoconus (SKC) that are categorized as normal or borderline in the Pentacam Belin/Ambrósio Enhanced Ectasia Display.

METHODS

This case-control study comprised 62 eyes with SKC and randomly selected eyes of 186 age-matched healthy controls. SKC was defined as the presence of the following: 1) normal topography, topometric indices, and slit lamp; 2) normal or borderline Belin/Ambrósio Enhanced Ectasia Display D index, back and front elevation difference; and 3) keratoconus in the fellow eye. Stepwise logistic regression analysis was performed to identify the best variable combination for detecting SKC cases from Ocular Response Analyzer and Pentacam parameters. Receiver operating characteristic curve analysis was used to determine the predictive accuracy [area under the curve (AUC)] of the model. Based on the predictors in the final logistic regression model, a linear equation was derived using the discriminant function analysis.

RESULTS

The final model (AUC: 0.948, sensitivity: 87.1%, and specificity: 91.4%) chose corneal hysteresis (CH) and D index from a total of 63 candidate variables. The final model had a higher AUC compared with D (0.933, P = 0.053) and CH (0.80, P < 0.001) alone. According to the discriminant function analysis, a higher CH was required with increasing D index to classify an eye as normal.

CONCLUSIONS

The proposed combined model provided varying cutoffs for CH and D as a function of the other. The probability plot as a function of CH and D index may be used for identifying eyes with SKC.

摘要

目的

开发一种联合生物力学和断层扫描模型,以识别 Pentacam Belin/Ambrósio 增强扩张显示为正常或边界的亚临床圆锥角膜(SKC)眼。

方法

本病例对照研究包括 62 只 SKC 眼和 186 只年龄匹配的健康对照眼。SKC 的定义如下:1)正常地形、地形指数和裂隙灯;2)正常或边界 Belin/Ambrósio 增强扩张显示 D 指数、前后高度差;3)对侧眼圆锥角膜。采用逐步逻辑回归分析,确定从眼反应分析仪和 Pentacam 参数中检测 SKC 病例的最佳变量组合。采用受试者工作特征曲线分析确定模型的预测准确性[曲线下面积(AUC)]。基于最终逻辑回归模型中的预测因子,使用判别函数分析推导出线性方程。

结果

最终模型(AUC:0.948、灵敏度:87.1%、特异性:91.4%)从总共 63 个候选变量中选择了角膜滞后(CH)和 D 指数。最终模型的 AUC 高于 D(0.933,P=0.053)和 CH(0.80,P<0.001)单独的 AUC。根据判别函数分析,随着 D 指数的增加,需要更高的 CH 才能将眼睛分类为正常。

结论

提出的联合模型为 CH 和 D 提供了不同的截止值,作为彼此的函数。CH 和 D 指数的概率图可用于识别 SKC 眼。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验