Suppr超能文献

早期圆锥角膜诊断策略:关于评估经济有效检测技术的叙述性综述

Strategies for Early Keratoconus Diagnosis: A Narrative Review of Evaluating Affordable and Effective Detection Techniques.

作者信息

Gideon Abou Said Arige, Gispets Joan, Shneor Einat

机构信息

Department of Optometry and Vision Science, Hadassah Academic College, Jerusalem 9101001, Israel.

Department of Optics and Optometry, Universitat Politècnica de Catalunya, Violinista Vellsolà, 37, 08222 Terrassa, Spain.

出版信息

J Clin Med. 2025 Jan 13;14(2):460. doi: 10.3390/jcm14020460.

Abstract

Keratoconus is a progressive corneal disorder that can lead to irreversible visual impairment if not detected early. Despite its high prevalence, early diagnosis is often delayed, especially in low-to-middle-income countries due to limited awareness and restricted access to advanced diagnostic tools such as corneal topography, tomography, optical coherence tomography, and corneal biomechanical assessments. These technologies are essential for identifying early-stage keratoconus, yet their high cost limits accessibility in resource-limited settings. While cost and portability are important for accessibility, the sensitivity and specificity of diagnostic tools must be considered as primary metrics to ensure accurate and effective detection of early keratoconus. This review examines both traditional and advanced diagnostic techniques, including the use of machine learning and artificial intelligence, to enhance early diagnosis. Artificial intelligence-based approaches show significant potential for transforming keratoconus diagnosis by improving the accuracy and sensitivity of early diagnosis, especially when combined with imaging devices. Notable innovations include tools such as SmartKC, a smartphone-based machine-learning application, mobile corneal topography through the null-screen test, and the Smartphone-based Keratograph, providing affordable and portable solutions. Additionally, contrast sensitivity testing demonstrates potential for keratoconus detection, although a precise platform for routine clinical use has yet to be established. The review emphasizes the need for increased awareness among clinicians, particularly in underserved regions, and advocates for the development of accessible, low-cost diagnostic tools. Further research is needed to validate the effectiveness of these emerging technologies in detecting early keratoconus.

摘要

圆锥角膜是一种进行性角膜疾病,如果不及早发现,可能导致不可逆转的视力损害。尽管其患病率很高,但早期诊断往往延迟,尤其是在低收入和中等收入国家,因为认识有限且难以获得角膜地形图、断层扫描、光学相干断层扫描和角膜生物力学评估等先进诊断工具。这些技术对于识别早期圆锥角膜至关重要,但其高昂的成本限制了资源有限地区的可及性。虽然成本和便携性对于可及性很重要,但诊断工具的敏感性和特异性必须被视为确保准确有效检测早期圆锥角膜的主要指标。本综述研究了传统和先进的诊断技术,包括机器学习和人工智能的应用,以加强早期诊断。基于人工智能的方法在通过提高早期诊断的准确性和敏感性来改变圆锥角膜诊断方面显示出巨大潜力,特别是与成像设备结合使用时。显著的创新包括诸如SmartKC等工具,这是一种基于智能手机的机器学习应用程序、通过无屏测试的移动角膜地形图以及基于智能手机的角膜地形图仪,提供了经济实惠且便于携带的解决方案。此外,对比敏感度测试显示出圆锥角膜检测的潜力,尽管尚未建立用于常规临床使用的精确平台。该综述强调临床医生,特别是在服务不足地区的医生,需要提高认识,并倡导开发可及的、低成本的诊断工具。需要进一步研究来验证这些新兴技术在检测早期圆锥角膜方面的有效性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/965b/11765535/ddea9b9b1814/jcm-14-00460-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验