Suppr超能文献

聚集网络中心度显示基因组和蛋白质组网络的非随机结构。

Aggregated network centrality shows non-random structure of genomic and proteomic networks.

机构信息

Centre of New Technologies, University of Warsaw, Warsaw, Poland; Department of Computer Science and Engineering, Jadavpur University, Kolkata, India.

Centre of New Technologies, University of Warsaw, Warsaw, Poland; Faculty of Mathematics and Information Science, Warsaw University of Technology, Warsaw, Poland.

出版信息

Methods. 2020 Oct 1;181-182:5-14. doi: 10.1016/j.ymeth.2019.11.006. Epub 2019 Nov 15.

Abstract

Network analysis is a powerful tool for modelling biological systems. We propose a new approach that integrates the genomic interaction data at population level with the proteomic interaction data. In our approach we use chromatin interaction analysis by paired-end tag sequencing (ChIA-PET) data from human genome to construct a set of genomic interaction networks, considering the natural partitioning of chromatin into chromatin contact domains (CCD). The genomic networks are then mapped onto proteomic interactions, to create protein-protein interaction (PPI) subnetworks. Furthermore, the network-based topological properties of these proteomic subnetworks are investigated, namely closeness centrality, betweenness centrality and clustering coefficient. We statistically confirm, that networks identified by our method significantly differ from random networks in these network properties. Additionally, we identify one of the regions, namely chr6:32014923-33217929, as having an above-random concentration of the single nucleotide polymorphisms (SNPs) related to autoimmune diseases. Then we present it in the form of a meta-network, which includes multi-omic data: genomic contact sites (anchors), genes, proteins and SNPs. Using this example we demonstrate, that the created networks provide a valid mapping of genes to SNPs, expanding on the raw SNP dataset used.

摘要

网络分析是建模生物系统的有力工具。我们提出了一种新方法,将群体水平的基因组相互作用数据与蛋白质组相互作用数据集成在一起。在我们的方法中,我们使用来自人类基因组的染色质相互作用分析通过配对末端标签测序 (ChIA-PET) 数据,考虑到染色质自然划分为染色质接触域 (CCD),构建了一组基因组相互作用网络。然后,将基因组网络映射到蛋白质相互作用上,以创建蛋白质-蛋白质相互作用 (PPI) 子网络。此外,还研究了这些蛋白质子网的基于网络的拓扑性质,即接近中心度、中间中心度和聚类系数。我们从统计学上证实,我们的方法识别的网络在这些网络特性上与随机网络显著不同。此外,我们还确定了一个区域,即 chr6:32014923-33217929,其中与自身免疫性疾病相关的单核苷酸多态性 (SNP) 浓度高于随机水平。然后,我们将其以元网络的形式呈现,其中包括多组学数据:基因组接触位点(锚点)、基因、蛋白质和 SNPs。通过这个例子,我们证明了所创建的网络提供了基因到 SNPs 的有效映射,扩展了使用的原始 SNP 数据集。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验